scholarly journals Integrated multi-omics reveals common properties underlying stress granule and P-body formation

Author(s):  
Christopher J. Kershaw ◽  
Michael G. Nelson ◽  
Jennifer Lui ◽  
Christian P. Bates ◽  
Martin D. Jennings ◽  
...  

ABSTRACTNon-membrane-bound compartments such as P-bodies (PBs) and stress granules (SGs) play important roles in the regulation of gene expression following environmental stresses. We have systematically determined the protein and mRNA composition of PBs and SGs formed in response to a common stress condition imposed by glucose depletion. We find that high molecular weight (HMW) complexes exist prior to glucose depletion that may act as seeds for the further condensation of proteins forming mature PBs and SGs. Both before and after glucose depletion, these HMW complexes are enriched for proteins containing low complexity and RNA binding domains. The mRNA content of these HMW complexes is enriched for long, structured mRNAs that become more poorly translated following glucose depletion. Many proteins and mRNAs are shared between PBs and SGs including several multivalent RNA binding proteins that may promote condensate interactions during liquid-liquid phase separation. Even where the precise identity of mRNAs and proteins localizing to PBs and SGs is distinct, the mRNAs and proteins share common biophysical and chemical features that likely trigger their phase separation.

2015 ◽  
Author(s):  
Gregory A. Cary ◽  
Dani B.N. Vinh ◽  
Patrick May ◽  
Rolf Kuestner ◽  
Aimee M. Dudley

P-bodies (PB) are ribonucleoprotein (RNP) complexes that aggregate into cytoplasmic foci when cells are exposed to stress. While the conserved mRNA decay and translational repression machineries are known components of PB, how and why cells assemble RNP complexes into large foci remain unclear. Using mass spectrometry to analyze proteins immunoisolated with the core PB protein Dhh1, we show that a considerable number of proteins contain low-complexity (LC) sequences, similar to proteins highly represented in mammalian RNP granules. We also show that the Hsp40 chaperone Ydj1, which contains an LC domain and controls prion protein aggregation, is required for the formation of Dhh1-GFP foci upon glucose depletion. New classes of proteins that reproducibly co-enrich with Dhh1-GFP during PB induction include proteins involved in nucleotide or amino acid metabolism, glycolysis, tRNA aminoacylation, and protein folding. Many of these proteins have been shown to form foci in response to other stresses. Finally, analysis of RNA associated with Dhh1-GFP shows enrichment of mRNA encoding the PB protein Pat1 and catalytic RNAs along with their associated mitochondrial RNA-binding proteins, suggesting an active role for RNA in PB function. Thus, global characterization of PB composition has uncovered proteins and RNA that are important for PB assembly.


2010 ◽  
Vol 38 (4) ◽  
pp. 1131-1136 ◽  
Author(s):  
Jennifer Lui ◽  
Susan G. Campbell ◽  
Mark P. Ashe

Glucose is the preferred carbon source for most eukaryotes and so it is important that cells can sense and react rapidly to fluctuations in glucose levels. It is becoming increasingly clear that the regulation of gene expression at the post-transcriptional level is important in the adaptation to changes in glucose levels, possibly as this could engender more rapid alterations in the concentrations of key proteins, such as metabolic enzymes. Following the removal of glucose from yeast cells a rapid inhibition of translation is observed. As a consequence, mRNPs (messenger ribonucleoproteins) relocalize into cytoplasmic granules known as P-bodies (processing bodies) and EGP-bodies. mRNA decay components localize into P-bodies, and thus these assemblies are likely to represent sites where mRNAs are targeted for degradation. In contrast, EGP-bodies lack any decay components and contain the eukaryotic translation initiation factors eIF4E, eIF4G and Pab1p, as well as other RNA-binding proteins. Therefore EGP-bodies probably constitute sites where mRNAs are earmarked for storage. So, it is possible that cells distinguish between transcripts and target them to either P-bodies or EGP-bodies depending on their functional value. The localization of mRNAs into these granules following glucose starvation may serve to preserve mRNAs that are involved in the diauxic shift to ethanol growth and entry into stationary phase, as well as to degrade mRNAs that are solely involved in glucose fermentation.


2021 ◽  
Vol 118 (50) ◽  
pp. e2109668118
Author(s):  
Ga Hye Kim ◽  
Ilmin Kwon

Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins that control key events in RNA biogenesis under both normal and diseased cellular conditions. The low-complexity (LC) domain of hnRNPs can become liquid-like droplets or reversible amyloid-like polymers by phase separation. Yet, whether phase separation of the LC domains contributes to physiological functions of hnRNPs remains unclear. hnRNPH1 contains two LC domains, LC1 and LC2. Here, we show that reversible phase separation of the LC1 domain is critical for both interaction with different kinds of RNA-binding proteins and control of the alternative-splicing activity of hnRNPH1. Interestingly, although not required for phase separation, the LC2 domain contributes to the robust transcriptional activation of hnRNPH1 when fused to the DNA-binding domain, as found recently in acute lymphoblastic leukemia. Our data suggest that the ability of the LC1 domain to phase-separate into reversible polymers or liquid-like droplets is essential for function of hnRNPH1 as an alternative RNA-splicing regulator, whereas the LC2 domain may contribute to the aberrant transcriptional activity responsible for cancer transformation.


2021 ◽  
Author(s):  
Anne Bremer ◽  
Mina Farag ◽  
Wade M. Borcherds ◽  
Ivan Peran ◽  
Erik W. Martin ◽  
...  

AbstractPhase separation of intrinsically disordered prion-like low-complexity domains (PLCDs) derived from RNA-binding proteins enable the formation of biomolecular condensates in cells. PLCDs have distinct amino acid compositions, and here we decipher the physicochemical impact of conserved compositional biases on the driving forces for phase separation. We find that tyrosine residues make for stronger drivers of phase separation than phenylalanine. Depending on their sequence contexts, arginine residues enhance or weaken phase separation, whereas lysine residues weaken cohesive interactions within PLCDs. Increased net charge per residue (NCPR) weakens the driving forces for phase separation of PLCDs and this effect can be modeled quantitatively. The effects of NCPR also weaken known correlations between the dimensions of single chains in dilute solution and the driving forces for phase separation. We build on experimental data to develop a coarse-grained model for accurate simulations of phase separation that yield novel insights regarding PLCD phase behavior.


2018 ◽  
Author(s):  
Emily E Stackpole ◽  
Michael R Akins ◽  
Maria Ivshina ◽  
Anastasia C Murthy ◽  
Nicolas L Fawzi ◽  
...  

RNA binding proteins (RBPs) typically function in higher order assemblages to regulate RNA localization and translation. The Fragile X homolog FXR2P is an RBP essential for formation of Fragile X granules, which associate with axonal mRNA and ribosomes in the intact brain. Here we performed an unbiased EGFP insertional mutagenesis screen to probe for FXR2P domains important for assembly into higher order structural states in neurons. Fifteen of the 18 unique in-frame FXR2PEGFP fusions tested formed cytosolic granules. However, EGFP insertion within a 23 amino acid region of the low complexity (LC) domain induced formation of distinct FXR2PEGFP fibrils (A and B) that were found in isolation or assembled into highly ordered bundles. Type A and B complexes exhibited different developmental timelines, ultrastructure and ribosome association with ribosomes absent from bundled Type B fibrils. The formation of both fibril types was dependent on an intact RNA binding domain. We conclude that formation of these higher order FXR2P assemblages with alternative structural and compositional states in neurons requires collaboration between the LC and RNA binding domains.


2021 ◽  
Author(s):  
Tania Bishola ◽  
Christine Clayton

In Trypanosoma brucei and related Kinetoplastids, regulation of gene expression occurs mostly post-transcriptionally, and RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Trypanosoma brucei ZC3H28 is a 114 KDa cytoplasmic mRNA-binding protein with a single C(x)7C(x)5C(x)sH zinc finger at the C-terminus and numerous proline-, histine- or glutamine-rich regions. We here show that N-terminally tagged ZC3H28 copurifies ribosomes, various RNA-binding proteins, and the translation initiation complex EIF4E4/EIF4G3. ZC3H28 is preferentially associated with long RNAs that have low complexity sequences in their 3'-untranslated regions. When tethered to a reporter mRNA, ZC3H28 increased the mRNA level without a corresponding increase in protein expression; this suggests that it stabilized the reporter but at the same time suppressed its translation. Indeed, there was a clear negative correlation between ZC3H28 mRNA binding and ribosome density. After ZC3H28 depletion, the relative levels of ribosomal protein mRNAs increased while levels of some long mRNAs decreased, but there is no overall correlation between binding and RNAi effects on mRNA abundance. We speculate that ZC3H28 might be implicated in stabilizing poorly-translated mRNAs.


2020 ◽  
pp. jbc.RA120.014894
Author(s):  
Ravi Kumar ◽  
Dipak Kumar Poria ◽  
Partho Sarothi Ray

Post-transcriptional regulation of gene expression plays a critical role in controlling the inflammatory response. An uncontrolled inflammatory response results in chronic inflammation, often leading to tumorigenesis. Programmed cell death 4 (PDCD4) is a pro-inflammatory tumor-suppressor gene which helps to prevent the transition from chronic inflammation to cancer. PDCD4 mRNA translation is regulated by an interplay between the oncogenic microRNA miR-21 and the RNA-binding protein (RBP) HuR in response to LPS stimulation, but the role of other regulatory factors remain unknown. Here we report that the RBP Lupus antigen (La) interacts with the 3’UTR of PDCD4 mRNA and prevents miR-21-mediated translation repression. While LPS causes nuclear-cytoplasmic translocation of HuR, it enhances cellular La expression. Remarkably, La and HuR were found to bind cooperatively to the PDCD4 mRNA and mitigate miR-21-mediated translation repression. The cooperative action of La and HuR reduced cell proliferation and enhanced apoptosis, reversing the pro-oncogenic function of miR-21. Together, these observations demonstrate a cooperative interplay between two RBPs, triggered differentially by the same stimulus, which exerts a synergistic effect on PDCD4 expression and thereby helps maintain a balance between inflammation and tumorigenesis.


Author(s):  
Jeffrey W. Hofmann ◽  
William W. Seeley ◽  
Eric J. Huang

Frontotemporal dementia is a group of early onset dementia syndromes linked to underlying frontotemporal lobar degeneration (FTLD) pathology that can be classified based on the formation of abnormal protein aggregates involving tau and two RNA binding proteins, TDP-43 and FUS. Although elucidation of the mechanisms leading to FTLD pathology is in progress, recent advances in genetics and neuropathology indicate that a majority of FTLD cases with proteinopathy involving RNA binding proteins show highly congruent genotype–phenotype correlations. Specifically, recent studies have uncovered the unique properties of the low-complexity domains in RNA binding proteins that can facilitate liquid–liquid phase separation in the formation of membraneless organelles. Furthermore, there is compelling evidence that mutations in FTLD genes lead to dysfunction in diverse cellular pathways that converge on the endolysosomal pathway, autophagy, and neuroinflammation. Together, these results provide key mechanistic insights into the pathogenesis and potential therapeutic targets of FTLD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hongjiang Liu ◽  
Yundong Zou ◽  
Chen Chen ◽  
Yundi Tang ◽  
Jianping Guo

Systemic lupus erythematosus (SLE) is a common and potentially fatal autoimmune disease that affects multiple organs. To date, its etiology and pathogenesis remains elusive. Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs with covalently closed loop structure. Growing evidence has demonstrated that circRNAs may play an essential role in regulation of gene expression and transcription by acting as microRNA (miRNA) sponges, impacting cell survival and proliferation by interacting with RNA binding proteins (RBPs), and strengthening mRNA stability by forming RNA-protein complexes duplex structures. The expression patterns of circRNAs exhibit tissue-specific and pathogenesis-related manner. CircRNAs have implicated in the development of multiple autoimmune diseases, including SLE. In this review, we summarize the characteristics, biogenesis, and potential functions of circRNAs, its impact on immune responses and highlight current understanding of circRNAs in the pathogenesis of SLE.


2021 ◽  
Vol 9 (3) ◽  
pp. 34
Author(s):  
Thomas E. Forman ◽  
Brenna J. C. Dennison ◽  
Katherine A. Fantauzzo

Cranial neural crest (NC) cells delaminate from the neural folds in the forebrain to the hindbrain during mammalian embryogenesis and migrate into the frontonasal prominence and pharyngeal arches. These cells generate the bone and cartilage of the frontonasal skeleton, among other diverse derivatives. RNA-binding proteins (RBPs) have emerged as critical regulators of NC and craniofacial development in mammals. Conventional RBPs bind to specific sequence and/or structural motifs in a target RNA via one or more RNA-binding domains to regulate multiple aspects of RNA metabolism and ultimately affect gene expression. In this review, we discuss the roles of RBPs other than core spliceosome components during human and mouse NC and craniofacial development. Where applicable, we review data on these same RBPs from additional vertebrate species, including chicken, Xenopus and zebrafish models. Knockdown or ablation of several RBPs discussed here results in altered expression of transcripts encoding components of developmental signaling pathways, as well as reduced cell proliferation and/or increased cell death, indicating that these are common mechanisms contributing to the observed phenotypes. The study of these proteins offers a relatively untapped opportunity to provide significant insight into the mechanisms underlying gene expression regulation during craniofacial morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document