scholarly journals Normal Childhood Brain Growth and a Universal Sex and Anthropomorphic Relationship to Cerebrospinal Fluid

Author(s):  
Mallory R Peterson ◽  
Venkateswararao Cherukuri ◽  
Joseph N Paulson ◽  
Paddy Ssentongo ◽  
Abhaya Kulkarni ◽  
...  

Object: The study of brain size and growth has a long and contentious history, yet normal brain volume development has yet to be fully described. In particular, the normal brain growth and cerebrospinal fluid (CSF) accumulation relationship is critical to characterize because it is impacted in numerous conditions of early childhood where brain growth and fluid accumulation are affected such as infection, hemorrhage, hydrocephalus, and a broad range of congenital disorders. This study aims to describe normal brain volume growth, particularly in the setting of cerebrospinal fluid accumulation. Methods: We analyzed 1067 magnetic resonance imaging (MRI) scans from 505 healthy pediatric subjects from birth to age 18 to quantify component and regional brain volumes. The volume trajectories were compared between the sexes and hemispheres using Smoothing Spline ANOVA. Population growth curves were developed using Generalized Additive Models for Location, Scale, and Shape. Results: Brain volume peaked at 10-12 years of age. Males exhibited larger age-adjusted total brain volumes than females, and body size normalization procedures did not eliminate this difference. The ratio of brain to CSF volume, however, revealed a universal age-dependent relationship independent of sex or body size. Conclusions: These findings enable the application of normative growth curves in managing a broad range of childhood disease where cognitive development, brain growth, and fluid accumulation are interrelated.

Author(s):  
Mallory R. Peterson ◽  
Venkateswararao Cherukuri ◽  
Joseph N. Paulson ◽  
Paddy Ssentongo ◽  
Abhaya V. Kulkarni ◽  
...  

OBJECTIVE The study of brain size and growth has a long and contentious history, yet normal brain volume development has yet to be fully described. In particular, the normal brain growth and cerebrospinal fluid (CSF) accumulation relationship is critical to characterize because it is impacted in numerous conditions of early childhood in which brain growth and fluid accumulation are affected, such as infection, hemorrhage, hydrocephalus, and a broad range of congenital disorders. The authors of this study aim to describe normal brain volume growth, particularly in the setting of CSF accumulation. METHODS The authors analyzed 1067 magnetic resonance imaging scans from 505 healthy pediatric subjects from birth to age 18 years to quantify component and regional brain volumes. The volume trajectories were compared between the sexes and hemispheres using smoothing spline ANOVA. Population growth curves were developed using generalized additive models for location, scale, and shape. RESULTS Brain volume peaked at 10–12 years of age. Males exhibited larger age-adjusted total brain volumes than females, and body size normalization procedures did not eliminate this difference. The ratio of brain to CSF volume, however, revealed a universal age-dependent relationship independent of sex or body size. CONCLUSIONS These findings enable the application of normative growth curves in managing a broad range of childhood diseases in which cognitive development, brain growth, and fluid accumulation are interrelated.


Author(s):  
Steven J. Schiff ◽  
Abhaya V. Kulkarni ◽  
Edith Mbabazi-Kabachelor ◽  
John Mugamba ◽  
Peter Ssenyonga ◽  
...  

OBJECTIVE Hydrocephalus in infants, particularly that with a postinfectious etiology, is a major public health burden in Sub-Saharan Africa. The authors of this study aimed to determine whether surgical treatment of infant postinfectious hydrocephalus in Uganda results in sustained, long-term brain growth and improved cognitive outcome. METHODS The authors performed a trial at a single center in Mbale, Uganda, involving infants (age < 180 days old) with postinfectious hydrocephalus randomized to endoscopic third ventriculostomy plus choroid plexus cauterization (ETV+CPC; n = 51) or ventriculoperitoneal shunt (VPS; n = 49). After 2 years, they assessed developmental outcome with the Bayley Scales of Infant Development, Third Edition (BSID-III), and brain volume (raw and normalized for age and sex) with CT scans. RESULTS Eighty-nine infants were assessed for 2-year outcome. There were no significant differences between the two surgical treatment arms in terms of BSID-III cognitive score (p = 0.17) or brain volume (p = 0.36), so they were analyzed together. Raw brain volumes increased between baseline and 2 years (p < 0.001), but this increase occurred almost exclusively in the 1st year (p < 0.001). The fraction of patients with a normal brain volume increased from 15.2% at baseline to 50.0% at 1 year but then declined to 17.8% at 2 years. Substantial normalized brain volume loss was seen in 21.3% patients between baseline and year 2 and in 76.7% between years 1 and 2. The extent of brain growth in the 1st year was not associated with the extent of brain volume changes in the 2nd year. There were significant positive correlations between 2-year brain volume and all BSID-III scores and BSID-III changes from baseline. CONCLUSIONS In Sub-Saharan Africa, even after successful surgical treatment of infant postinfectious hydrocephalus, early posttreatment brain growth stagnates in the 2nd year. While the reasons for this finding are unclear, it further emphasizes the importance of primary infection prevention and mitigation strategies along with optimizing the child’s environment to maximize brain growth potential.


2017 ◽  
Vol 89 (3) ◽  
pp. 185-194 ◽  
Author(s):  
Emma van der Woude ◽  
Hans M. Smid

Trichogramma evanescens parasitic wasps show large phenotypic plasticity in brain and body size, resulting in a 5-fold difference in brain volume among genetically identical sister wasps. Brain volume scales linearly with body volume in these wasps. This isometric brain scaling forms an exception to Haller's rule, which states that small animals have relatively larger brains than large animals. The large plasticity in brain size may be facilitated by plasticity in neuron size, in the number of neurons, or both. Here, we investigated whether brain isometry requires plasticity in the number and size of monoaminergic neurons that express serotonin (5HT), octopamine (OA), and dopamine (DA). Genetically identical small and large T. evanescens appear to have the same number of 5HT-, OA-, and DA-like immunoreactive cell bodies in their brains, but these cell bodies differ in diameter. This indicates that brain isometry can be facilitated by plasticity in the size of monoaminergic neurons, rather than plasticity in numbers of monoaminergic neurons. Selection pressures on body miniaturization may have resulted in the evolution of miniaturized neural pathways that allow even the smallest wasps to find suitable hosts. Plasticity in the size of neural components may be among the mechanisms that underlie isometric brain scaling while maintaining cognitive abilities in the smallest individuals.


2016 ◽  
Vol 88 (3-4) ◽  
pp. 235-257 ◽  
Author(s):  
Sam H. Ridgway ◽  
Kevin P. Carlin ◽  
Kaitlin R. Van Alstyne ◽  
Alicia C. Hanson ◽  
Raymond J. Tarpley

We compared mature dolphins with 4 other groupings of mature cetaceans. With a large data set, we found great brain diversity among 5 different taxonomic groupings. The dolphins in our data set ranged in body mass from about 40 to 6,750 kg and in brain mass from 0.4 to 9.3 kg. Dolphin body length ranged from 1.3 to 7.6 m. In our combined data set from the 4 other groups of cetaceans, body mass ranged from about 20 to 120,000 kg and brain mass from about 0.2 to 9.2 kg, while body length varied from 1.21 to 26.8 m. Not all cetaceans have large brains relative to their body size. A few dolphins near human body size have human-sized brains. On the other hand, the absolute brain mass of some other cetaceans is only one-sixth as large. We found that brain volume relative to body mass decreases from Delphinidae to a group of Phocoenidae and Monodontidae, to a group of other odontocetes, to Balaenopteroidea, and finally to Balaenidae. We also found the same general trend when we compared brain volume relative to body length, except that the Delphinidae and Phocoenidae-Monodontidae groups do not differ significantly. The Balaenidae have the smallest relative brain mass and the lowest cerebral cortex surface area. Brain parts also vary. Relative to body mass and to body length, dolphins also have the largest cerebellums. Cortex surface area is isometric with brain size when we exclude the Balaenidae. Our data show that the brains of Balaenidae are less convoluted than those of the other cetaceans measured. Large vascular networks inside the cranial vault may help to maintain brain temperature, and these nonbrain tissues increase in volume with body mass and with body length ranging from 8 to 65% of the endocranial volume. Because endocranial vascular networks and other adnexa, such as the tentorium cerebelli, vary so much in different species, brain size measures from endocasts of some extinct cetaceans may be overestimates. Our regression of body length on endocranial adnexa might be used for better estimates of brain volume from endocasts or from endocranial volume of living species or extinct cetaceans.


2010 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jason G. Mandell ◽  
Thomas Neuberger ◽  
Corina S. Drapaca ◽  
Andrew G. Webb ◽  
Steven J. Schiff

Object Hydrocephalus has traditionally been quantified by linear measures of ventricular size, with adjunct use of cortical mantle thickness. However, clinical outcome depends on cognitive function, which is more directly related to brain volume than these previous measures. The authors sought to quantify the dynamics of brain and ventricular volume growth in normal compared with hydrocephalic mice. Methods Hydrocephalus was induced in 14-day-old C57BL/6 mice by percutaneous injection of kaolin into the cisterna magna. Nine hydrocephalic and 6 normal mice were serially imaged from age 2–12 weeks with a 14.1-T MR imaging unit. Total brain and ventricle volumes were calculated, and linear discriminant analysis was applied. Results Two very different patterns of response were seen in hydrocephalic mice compared with mice with normative growth. In one pattern (3 mice) brain growth was normal despite accumulation of CSF, and in the second pattern (6 mice) abnormal brain enlargement was accompanied by increased CSF volume along with parenchymal edema. In this latter pattern, spontaneous ventricular rupture led to normalization of brain volume, implying edema from transmantle pressure gradients. These 2 patterns of hydrocephalus were significantly discriminable using linear discriminant analysis (p < 0.01). In contrast, clinically relevant measurements of head circumference or frontal and occipital horn ratios were unable to discriminate between these patterns. Conclusions This study is, to the authors' knowledge, the first serial quantification of the growth of brain and ventricle volumes in normal versus hydrocephalic development. The authors' findings demonstrate the feasibility of constructing normative curves of brain and fluid growth as complements to normative head circumference curves. By measuring brain volumes, distinct patterns of brain growth and enlargement can be observed, which are more likely linked to cognitive development and clinical outcome than fluid volumes alone.


2015 ◽  
Vol 15 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Jason G. Mandell ◽  
Abhaya V. Kulkarni ◽  
Benjamin C. Warf ◽  
Steven J. Schiff

OBJECT The evaluation of hydrocephalus remains focused on ventricular size, yet the goal of treatment is to allow for healthy brain development. It is likely that brain volume is more related to cognitive development than is fluid volume in children with hydrocephalus. This study tests this hypothesis by comparing brain and fluid volumes with neurocognitive outcome in pediatric patients with hydrocephalus. METHODS Warf and colleagues previously acquired CT scans for pediatric patients in Uganda with myelomeningocele, measured frontal–occipital horn ratio (FOHR), and administered the modified Bayley Scales of Infant Development, third edition (BSID-III) to measure neurocognitive outcome that did not correlate with FOHR. In this present study, brain and fluid volumes were measured in 33 of these patients, 26 of whom required surgical treatment for hydrocephalus. Linear discrimination analysis (LDA) was used to test whether age-normalized brain and fluid volumes can discriminate neurocognitive outcome. RESULTS Hydrocephalic patients show normal to small brain volumes and substantially larger fluid volumes compared with normal values. FOHR correlates highly with fluid volume (r = 0.84, p < 0.001) and substantially less with brain volume (r = −0.37, p = 0.03), while brain and fluid volumes do not correlate with each other (p = 0.99). Brain and CSF volumes correlated best with fine motor (p = 0.03, p = 0.01), cognitive (p = 0.05, p = 0.09), and expressive communication (p = 0.08, p = 0.08) scores. A combination of these 3 scores was used as a multivariate measure of neurocognitive outcome. Brain volume alone, unlike fluid volume, could discriminate high from low cognitive outcome (by t-test and ANOVA). It was shown that a combination of age-normalized brain and fluid volumes can discriminate neurocognitive outcome by 2-way LDA (p < 0.01) and 3-way LDA (p < 0.01). The multivariate LDA demonstrated the contribution of large fluid volume to a decrement in cognition. CONCLUSIONS Hydrocephalus is treated by normalizing CSF, but normal brain development depends on brain growth. A combination of brain and CSF volumes appears to be significantly more powerful at predicting good versus poor neurocognitive outcomes in patients with hydrocephalus than either volume alone.


2019 ◽  
Vol 25 (7) ◽  
pp. 927-936 ◽  
Author(s):  
Frederik Bartels ◽  
Katharina Nobis ◽  
Graham Cooper ◽  
Eva Wendel ◽  
Robert Cleaveland ◽  
...  

Background: Paediatric multiple sclerosis (pedMS) patients at a single site were shown to have reduced brain volumes and failure of age-expected brain growth compared to healthy controls. However, the precise time of onset of brain volume loss remains unclear. Objective: To longitudinally study brain volumes in a multi-centre European cohort at first presentation and after 2 years. Methods: Brain volumes of high-resolution magnetic resonance imaging (MRI) data from 37 pedMS patients at first presentation prior to steroid therapy and at 2-year follow-up ( n = 21) were compared to matched longitudinal MRI data from the NIH Paediatric MRI Data Repository. Results: Patients showed significantly reduced whole brain, grey and white matter and increased ventricular volumes at initial presentation and at follow-up compared to controls. Over 2 years, patients exhibited significant reduction of whole brain and white matter volumes, accompanied by increased ventricular volume. Brain volume loss at follow-up correlated with a higher number of infratentorial lesions, relapses and an increased Expanded Disability Status Scale (EDSS) score. Conclusions: In pedMS patients, brain volume loss is present already at first clinical presentation and accelerated over 2 years. Increased disease activity is associated with more severe brain volume loss. MRI brain volume change might serve as an outcome parameter in future prospective pedMS studies.


2015 ◽  
Vol 85 (4) ◽  
pp. 245-256 ◽  
Author(s):  
Gemma E. White ◽  
Culum Brown

When correlating brain size and structure with behavioural and environmental characteristics, a range of techniques can be utilised. This study used gobiid fishes to quantitatively compare brain volumes obtained via three different methods; these included the commonly used techniques of histology and approximating brain volume to an idealised ellipsoid, and the recently established technique of X-ray micro-computed tomography (micro-CT). It was found that all three methods differed significantly from one another in their volume estimates for most brain lobes. The ellipsoid method was prone to over- or under-estimation of lobe size, histology caused shrinkage in the telencephalon, and although micro-CT methods generated the most reliable results, they were also the most expensive. Despite these differences, all methods depicted quantitatively similar relationships among the four different species for each brain lobe. Thus, all methods support the same conclusions that fishes inhabiting rock pool and sandy habitats have different patterns of brain organisation. In particular, fishes from spatially complex rock pool habitats were found to have larger telencephalons, while those from simple homogenous sandy shores had a larger optic tectum. Where possible we recommend that micro-CT be used in brain volume analyses, as it allows for measurements without destruction of the brain and fast identification and quantification of individual brain lobes, and minimises many of the biases resulting from the histology and ellipsoid methods.


2017 ◽  
Vol 24 (8) ◽  
pp. 1039-1045 ◽  
Author(s):  
Carla Tortorella ◽  
Vita Direnzo ◽  
Maddalena Ruggieri ◽  
Stefano Zoccolella ◽  
Mariangela Mastrapasqua ◽  
...  

Background: Brain atrophy is a known marker of irreversible tissue damage in multiple sclerosis (MS). Cerebrospinal fluid (CSF) osteopontin (OPN) and neurofilament light chain (NF-L) have been proposed as candidate surrogate markers of inflammatory and neurodegenerative processes in MS. Objective: To evaluate the relationship between CSF NF-L and OPN levels and brain grey and white matter volumes in patients with clinically isolated syndrome (CIS) suggestive of MS. Methods: A total of 41 CIS patients and 30 neurological controls (NCs) were included. CSF NF-L and OPN were measured by commercial ELISA. Measures of brain volume (normalized brain volume (NBV), normalized grey matter volume (NGV), peripheral grey matter volume (PGV), normalized white matter volume (WMV), and ventricular volume) were obtained by SIENAX. Corpus callosum index (CCI) was calculated. Brain volumes were categorized into ‘high’ and ‘low’ according to the median value. Results: CSF NF-L and OPN levels were higher in CIS patients in comparison with NCs. CIS patients with ‘low’ TGV, PGV, and TBV showed higher CSF NF-L levels than CIS patients with ‘high’ brain volumes. TGV and PGV correlated inversely with NF-L levels, whereas CCI was inversely related to OPN levels. CSF NF-L was the only independent predictor of TGV and PGV. Conclusion: CSF NF-L tracks mainly grey matter damage in patients with CIS suggestive of MS.


Sign in / Sign up

Export Citation Format

Share Document