brain lobe
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 8)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Ge He ◽  
Lei Fan ◽  
Yucheng Liu

Abstract Two-dimensional mesoscale finite element analysis (FEA) of a multi-layered brain tissue was performed to calculate the damage related average stress triaxiality and local maximum von Mises strain in the brain. The FEA was integrated with rate dependent hyperelastic and internal state variable (ISV) models respectively describing the behaviors of wet and dry brain tissues. Using the finite element results, a statistical method of design of experiments (DOE) was utilized to independently screen the relative influences of seven parameters related to brain morphology (sulcal width/depth, gray matter (GM) thickness, cerebrospinal fluid (CSF) thickness and brain lobe) and loading/environment conditions (strain rate and humidity) with respect to the potential damage growth/coalescence in the brain tissue. The results of the parametric study illustrated that the GM thickness and humidity were the two most crucial parameters affecting average stress triaxiality. For the local maximum von Mises strain at the depth of brain sulci, the brain lobe/region was the most influential factor. The conclusion of this investigation gives insight for the future development and refinement of a macroscale brain damage model incorporating information from lower length scale


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zheng Dong ◽  
Xinyu Yang ◽  
Liming Chang ◽  
Xin Song ◽  
Xiangchun Li ◽  
...  

Objective. To inquire into the influence of magnetic resonance imaging (MRI) on the diagnostic efficacy and satisfaction of patients with Alzheimer’s disease (AD). Methods. This study included 42 healthy people (control group) and 66 patients with AD (AD group). The hippocampus volume, temporal sulcus spacing, left-right brain diameter, brain lobe volume, hippocampal height, temporal horn width, lateral fissure width, and degree of leukoaraiosis were all measured using an MRI scan. After diagnosis, the satisfaction of patients in both arms was investigated and the satisfaction degree was recorded. Results. Compared with the control group, the left and right hippocampal volumes and hippocampal height of AD patients were smaller, while the temporal sulcus spacing, temporal horn width, lateral fissure width, and left-right brain diameter were remarkably higher. A statistical difference was present in the degree of leukoaraiosis between the two arms. The frontal and temporal lobe volumes of AD patients were notably lower while the volumes of parietal and occipital lobes were similar, versus the control group. The total satisfaction was 83.33% in the control group and 86.36% in the AD group, with no statistical difference between the two arms. Conclusions. MRI can effectively mine the brain information of AD patients with a high patient satisfaction, which has potential value in clinical application.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012046
Author(s):  
F A Rosli ◽  
A Saidatul ◽  
M A Markom ◽  
S Mohamaddan

Abstract Biometric authentication is recently used for verification someone’s identity according to their physiological and behavioural characteristics. The most popular biometric techniques are fingerprints, facial and voices recognition. However, these techniques have the disadvantage in which they can easily be imitated and mimicked by hackers to access a device or a system. Therefore, this study proposed electroencephalogram (EEG) as a biometric technique to encounter this problem. The wavelet packet decomposition is explored in this study for the feature extraction method. The wavelet packet decomposition feature is represented, root mean squared (RMS) wavelet features to extract a piece of meaningful information from the original EEG signal. These features were applied to classify between 15 subjects by using Support Vector Machine (SVM). The channel reduction was conducted to investigate the brain lobe effectiveness during the paradigms of familiar and unfamiliar EEG signals which the channel reduction is based on the brain lobes (temporal, occipital, parietal, and frontal). As a result, the above 14 channels obtained the best performance of the system which is 97.44% of correct recognition rate (CRR). The analysis of the paradigms among familiar only, unfamiliar only, and both familiar and unfamiliar was conducted to evaluate the contribution of the paradigms. The results show that 14 channels obtained the best familiar paradigms while the other contributed by unfamiliar. The result is promising because the CRR computed above 90%, however further analysis of channel reduction has to be work to obtain specific channel to develop the small number of channel for comfort and convenience biometric sensor which is suitable for future authentication.


2021 ◽  
Author(s):  
Casey A Schmidt ◽  
Lucy Y Min ◽  
Michelle H McVay ◽  
Joseph D Giusto ◽  
John C Brown ◽  
...  

Mature tRNAs are generated by multiple RNA processing events, which can include the excision of intervening sequences. The tRNA splicing endonuclease (TSEN) complex is responsible for cleaving these intron-containing pre-tRNA transcripts. In humans, TSEN copurifies with CLP1, an RNA kinase. Despite extensive work on CLP1, its in vivo connection to tRNA splicing remains unclear. Interestingly, mutations in CLP1 or TSEN genes cause neurological diseases in humans that are collectively termed Pontocerebellar Hypoplasia (PCH). In mice, loss of Clp1 kinase activity results in premature death, microcephaly and progressive loss of motor function. To determine if similar phenotypes are observed in Drosophila, we characterized mutations in crowded-by-cid (cbc), the CLP1 ortholog, as well as in the fly ortholog of human TSEN54. Analyses of organismal viability, larval locomotion and brain size revealed that mutations in both cbc and Tsen54 phenocopy those in mammals in several details. In addition to an overall reduction in brain lobe size, we also found increased cell death in mutant larval brains. Ubiquitous or tissue-specific knockdown of cbc in neurons and muscles reduced viability and locomotor function. These findings indicate that we can successfully model PCH in a genetically-tractable invertebrate.


2019 ◽  
Vol 15 ◽  
pp. P107-P108
Author(s):  
Hanne Struyfs ◽  
Diana M. Sima ◽  
Eline Van Vlierberghe ◽  
Annemie Ribbens ◽  
Lene Claes ◽  
...  

2019 ◽  
Vol 15 ◽  
pp. P1086-P1086
Author(s):  
Hanne Struyfs ◽  
Diana M. Sima ◽  
Eline Van Vlierberghe ◽  
Annemie Ribbens ◽  
Lene Claes ◽  
...  

2015 ◽  
Vol 85 (4) ◽  
pp. 245-256 ◽  
Author(s):  
Gemma E. White ◽  
Culum Brown

When correlating brain size and structure with behavioural and environmental characteristics, a range of techniques can be utilised. This study used gobiid fishes to quantitatively compare brain volumes obtained via three different methods; these included the commonly used techniques of histology and approximating brain volume to an idealised ellipsoid, and the recently established technique of X-ray micro-computed tomography (micro-CT). It was found that all three methods differed significantly from one another in their volume estimates for most brain lobes. The ellipsoid method was prone to over- or under-estimation of lobe size, histology caused shrinkage in the telencephalon, and although micro-CT methods generated the most reliable results, they were also the most expensive. Despite these differences, all methods depicted quantitatively similar relationships among the four different species for each brain lobe. Thus, all methods support the same conclusions that fishes inhabiting rock pool and sandy habitats have different patterns of brain organisation. In particular, fishes from spatially complex rock pool habitats were found to have larger telencephalons, while those from simple homogenous sandy shores had a larger optic tectum. Where possible we recommend that micro-CT be used in brain volume analyses, as it allows for measurements without destruction of the brain and fast identification and quantification of individual brain lobes, and minimises many of the biases resulting from the histology and ellipsoid methods.


2008 ◽  
Vol 100 (4) ◽  
pp. 794-800 ◽  
Author(s):  
Carla Dullemeijer ◽  
Peter L. Zock ◽  
Ruben Coronel ◽  
Hester M. Den Ruijter ◽  
Martijn B. Katan ◽  
...  

Very long-chain n-3 PUFA from fish are suggested to play a role in the development of the brain. Fish oil feeding results in higher proportions of n-3 PUFA in the brains of newborn piglets. However, the effect of fish oil on the fatty acid composition of specific cerebral brain lobes in juvenile pigs is largely uninvestigated. This study examined the effect of a fish oil diet on the fatty acid composition of the frontal, parietal, temporal and occipital brain lobes in juvenile pigs (7 weeks old). Pigs were randomly allocated to a semipurified pig diet containing either 4 % (w/w) fish oil (n 19) or 4 % (w/w) high-oleic acid sunflower oil (HOSF diet, n 18) for a period of 8 weeks. The fish oil diet resulted in significantly higher proportions (%) of DHA in the frontal (10·6 (sd1·2)), parietal (10·2 (sd1·5)) and occipital brain lobes (9·9 (sd 1·3)), but not in the temporal lobe (7·7 (sd1·6)), compared with pigs fed the HOSF diet (frontal lobe, 7·5 (sd1·0); parietal lobe, 8·1 (sd 1·3); occipital lobe, 7·3 (sd1·2), temporal lobe, 6·6 (sd1·2). Moreover, the proportion of DHA was significantly lower in the temporal lobe compared with the frontal, parietal and occipital brain lobes in pigs fed a fish oil diet. In conclusion, the brains of juvenile pigs appear to be responsive to dietary fish oil, although the temporal brain lobe is less responsive compared with the other three brain lobes. The functional consequences of these differences are a challenging focus for future investigation.


Sign in / Sign up

Export Citation Format

Share Document