scholarly journals RepeatProfiler: a pipeline for visualization and comparative analysis of repetitive DNA profiles

Author(s):  
S. Negm ◽  
A. Greenberg ◽  
A.M. Larracuente ◽  
J.S. Sproul

AbstractStudy of DNA repeats in model organisms highlights the role of repetitive DNA in many processes that drive genome evolution and phenotypic change. Because repetitive DNA is much more dynamic than single-copy DNA, repetitive sequences can reveal signals of evolutionary history over short time scales that may not be evident in sequences from slower-evolving genomic regions. Many tools for studying repeats are directed toward organisms with existing genomic resources, including genome assemblies and repeat libraries. However, signals in repeat variation may prove especially valuable in disentangling evolutionary histories in diverse non-model groups, for which genomic resources are limited. Here we introduce RepeatProfiler, a tool for generating, visualizing, and comparing repetitive DNA profiles from low-coverage, short-read sequence data. RepeatProfiler automates the generation and visualization of repetitive DNA coverage depth profiles and allows for statistical comparison of profile shape across samples. In addition, RepeatProfiler facilitates comparison of profiles by extracting signal from sequence variants across profiles which can then be analyzed as molecular morphological characters using phylogenetic analysis. We validate RepeatProfiler with data sets from ground beetles (Bembidion), flies (Drosophila), and tomatoes (Solanum). We highlight the potential of repetitive DNA profiles as a high-resolution data source for studies in species delimitation, comparative genomics, and repeat biology.

2020 ◽  
Vol 477 (2) ◽  
pp. 325-339 ◽  
Author(s):  
Vaclav Brazda ◽  
Miroslav Fojta ◽  
Richard P. Bowater

DNA is a fundamentally important molecule for all cellular organisms due to its biological role as the store of hereditary, genetic information. On the one hand, genomic DNA is very stable, both in chemical and biological contexts, and this assists its genetic functions. On the other hand, it is also a dynamic molecule, and constant changes in its structure and sequence drive many biological processes, including adaptation and evolution of organisms. DNA genomes contain significant amounts of repetitive sequences, which have divergent functions in the complex processes that involve DNA, including replication, recombination, repair, and transcription. Through their involvement in these processes, repetitive DNA sequences influence the genetic instability and evolution of DNA molecules and they are located non-randomly in all genomes. Mechanisms that influence such genetic instability have been studied in many organisms, including within human genomes where they are linked to various human diseases. Here, we review our understanding of short, simple DNA repeats across a diverse range of bacteria, comparing the prevalence of repetitive DNA sequences in different genomes. We describe the range of DNA structures that have been observed in such repeats, focusing on their propensity to form local, non-B-DNA structures. Finally, we discuss the biological significance of such unusual DNA structures and relate this to studies where the impacts of DNA metabolism on genetic stability are linked to human diseases. Overall, we show that simple DNA repeats in bacteria serve as excellent and tractable experimental models for biochemical studies of their cellular functions and influences.


2019 ◽  
Author(s):  
James M. Pflug ◽  
Valerie Renee Holmes ◽  
Crystal Burrus ◽  
J. Spencer Johnston ◽  
David R. Maddison

ABSTRACTMeasuring genome size across different species can yield important insights into evolution of the genome and allow for more informed decisions when designing next-generation genomic sequencing projects. New techniques for estimating genome size using shallow genomic sequence data have emerged which have the potential to augment our knowledge of genome sizes, yet these methods have only been used in a limited number of empirical studies. In this project, we compare estimation methods using next-generation sequencing (k-mer methods and average read depth of single-copy genes) to measurements from flow cytometry, the gold standard for genome size measures, using ground beetles (Carabidae) and other members of the beetle suborder Adephaga as our test system. We also present a new protocol for using read-depth of single-copy genes to estimate genome size. Additionally, we report flow cytometry measurements for five previously unmeasured carabid species, as well as 21 new draft genomes and six new draft transcriptomes across eight species of adephagan beetles. No single sequence-based method performed well on all species, and all tended to underestimate the genome sizes, although only slightly in most samples. For one species, Bembidion haplogonum, most sequence-based methods yielded estimates half the size suggested by flow cytometry. This discrepancy for k-mer methods can be explained by a large number of repetitive sequences, but we have no explanation for why read-depth methods yielded results that were also strikingly low.


2018 ◽  
Author(s):  
S. A. Kitchen ◽  
A. Ratan ◽  
O. C. Bedoya-Reina ◽  
R. Burhans ◽  
N. D. Fogarty ◽  
...  

ABSTRACTGenomic sequence data for non-model organisms are increasingly available requiring the development of efficient and reproducible workflows. Here, we develop the first genomic resources and reproducible workflows for two threatened members of the reef-building coral genus Acropora. We generated genomic sequence data from multiple samples of the Caribbean A. cervicornis (staghorn coral) and A. palmata (elkhorn coral), and predicted millions of nucleotide variants among these two species and the Pacific A. digitifera. A subset of predicted nucleotide variants were verified using restriction length polymorphism assays and proved useful in distinguishing the two Caribbean Acroporids and the hybrid they form (“A. prolifera”). Nucleotide variants are freely available from the Galaxy server (usegalaxy.org), and can be analyzed there with computational tools and stored workflows that require only an internet browser. We describe these data and some of the analysis tools, concentrating on fixed differences between A. cervicornis and A. palmata. In particular, we found that fixed amino acid differences between these two species were enriched in proteins associated with development, cellular stress response and the host’s interactions with associated microbes, for instance in the Wnt pathway, ABC transporters and superoxide dismutase. Identified candidate genes may underlie functional differences in the way these threatened species respond to changing environments. Users can expand the presented analyses easily by adding genomic data from additional species as they become available.Article SummaryWe provide the first comprehensive genomic resources for two threatened Caribbean reef-building corals in the genus Acropora. We identified genetic differences in key pathways and genes known to be important in the animals’ response to the environmental disturbances and larval development. We further provide a list of candidate loci for large scale genotyping of these species to gather intra- and interspecies differences between A. cervicornis and A. palmata across their geographic range. All analyses and workflows are made available and can be used as a resource to not only analyze these corals but other non-model organisms.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gina V. Filloramo ◽  
Bruce A. Curtis ◽  
Emma Blanche ◽  
John M. Archibald

Abstract Background The marine diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum are valuable model organisms for exploring the evolution, diversity and ecology of this important algal group. Their reference genomes, published in 2004 and 2008, respectively, were the product of traditional Sanger sequencing. In the case of T. pseudonana, optical restriction site mapping was employed to further clarify and contextualize chromosome-level scaffolds. While both genomes are considered highly accurate and reasonably contiguous, they still contain many unresolved regions and unordered/unlinked scaffolds. Results We have used Oxford Nanopore Technologies long-read sequencing to update and validate the quality and contiguity of the T. pseudonana and P. tricornutum genomes. Fine-scale assessment of our long-read derived genome assemblies allowed us to resolve previously uncertain genomic regions, further characterize complex structural variation, and re-evaluate the repetitive DNA content of both genomes. We also identified 1862 previously undescribed genes in T. pseudonana. In P. tricornutum, we used transposable element detection software to identify 33 novel copia-type LTR-RT insertions, indicating ongoing activity and rapid expansion of this superfamily as the organism continues to be maintained in culture. Finally, Bionano optical mapping of P. tricornutum chromosomes was combined with long-read sequence data to explore the potential of long-read sequencing and optical mapping for resolving haplotypes. Conclusion Despite its potential to yield highly contiguous scaffolds, long-read sequencing is not a panacea. Even for relatively small nuclear genomes such as those investigated herein, repetitive DNA sequences cause problems for current genome assembly algorithms. Determining whether a long-read derived genomic assembly is ‘better’ than one produced using traditional sequence data is not straightforward. Our revised reference genomes for P. tricornutum and T. pseudonana nevertheless provide additional insight into the structure and evolution of both genomes, thereby providing a more robust foundation for future diatom research.


2014 ◽  
Vol 13 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Alexandra Marina Gottlieb ◽  
Lidia Poggio

The development of modern approaches to the genetic improvement of the tree crops Ilex paraguariensis (‘yerba mate’) and Ilex dumosa (‘yerba señorita’) is halted by the scarcity of basic genetic information. In this study, we characterized the implementation of low-cost methodologies such as representational difference analysis (RDA), single-strand conformation polymorphisms (SSCP), and reverse and direct dot-blot filter hybridization assays coupled with thorough bioinformatic characterization of sequence data for both species. Also, we estimated the genome size of each species using flow cytometry. This study contributes to the better understanding of the genetic differences between two cultivated species, by generating new quantitative and qualitative genome-level data. Using the RDA technique, we isolated a group of non-coding repetitive sequences, tentatively considered as Ilex-specific, which were 1.21- to 39.62-fold more abundant in the genome of I. paraguariensis. Another group of repetitive DNA sequences involved retrotransposons, which appeared 1.41- to 35.77-fold more abundantly in the genome of I. dumosa. The genomic DNA of each species showed different performances in filter hybridizations: while I. paraguariensis showed a high intraspecific affinity, I. dumosa exhibited a higher affinity for the genome of the former species (i.e. interspecific). These differences could be attributed to the occurrence of homologous but slightly divergent repetitive DNA sequences, highly amplified in the genome of I. paraguariensis but not in the genome of I. dumosa. Additionally, our hybridization outcomes suggest that the genomes of both species have less than 80% similarity. Moreover, for the first time, we report herein a genome size estimate of 1670 Mbp for I. paraguariensis and that of 1848 Mbp for I. dumosa.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256861
Author(s):  
Danielle N. Stringer ◽  
Terry Bertozzi ◽  
Karen Meusemann ◽  
Steven Delean ◽  
Michelle T. Guzik ◽  
...  

Transcriptome-based exon capture approaches, along with next-generation sequencing, are allowing for the rapid and cost-effective production of extensive and informative phylogenomic datasets from non-model organisms for phylogenetics and population genetics research. These approaches generally employ a reference genome to infer the intron-exon structure of targeted loci and preferentially select longer exons. However, in the absence of an existing and well-annotated genome, we applied this exon capture method directly, without initially identifying intron-exon boundaries for bait design, to a group of highly diverse Haloniscus (Philosciidae), paraplatyarthrid and armadillid isopods, and examined the performance of our methods and bait design for phylogenetic inference. Here, we identified an isopod-specific set of single-copy protein-coding loci, and a custom bait design to capture targeted regions from 469 genes, and analysed the resulting sequence data with a mapping approach and newly-created post-processing scripts. We effectively recovered a large and informative dataset comprising both short (<100 bp) and longer (>300 bp) exons, with high uniformity in sequencing depth. We were also able to successfully capture exon data from up to 16-year-old museum specimens along with more distantly related outgroup taxa, and efficiently pool multiple samples prior to capture. Our well-resolved phylogenies highlight the overall utility of this methodological approach and custom bait design, which offer enormous potential for application to future isopod, as well as broader crustacean, molecular studies.


Genome ◽  
1994 ◽  
Vol 37 (4) ◽  
pp. 565-576 ◽  
Author(s):  
Jeffrey L. Bennetzen ◽  
Kathrin Schrick ◽  
Patricia S. Springer ◽  
Willis E. Brown ◽  
Phillip SanMiguel

We have characterized the copy number, organization, and genomic modification of DNA sequences within and flanking several maize genes. We found that highly repetitive DNA sequences were tightly linked to most of these genes. The highly repetitive sequences were not found within the coding regions but could be found within 6 kb either 3′ or 5′ to the structural genes. These highly repetitive regions were each composed of unique combinations of different short repetitive sequences. Highly repetitive DNA blocks were not interrupted by any detected single copy DNA. The 13 classes of highly repetitive DNA identified were found to vary little between diverse Zea isolates. The level of DNA methylation in and near these genes was determined by scoring the digestibility of 63 recognition/cleavage sites with restriction enzymes that were sensitive to 5-methylation of cytosines in the sequences 5′-CG-3′ and 5′-CNG-3′. All but four of these sites were digestible in chromosomal DNA. The four undigested sites were localized to extragenic DNA within or near highly repetitive DNA, while the other 59 sites were in low copy number DNAs. Pulsed field gel analysis indicated that the majority of cytosine modified tracts range from 20 to 200 kb in size. Single copy sequences hybridized to the unmodified domains, while highly repetitive sequences hybridized to the modified regions. Middle repetitive sequences were found in both domains.Key words: genome organization, interspersed repetitive DNA, DNA modification.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Eleanor F. Miller ◽  
Andrea Manica

Abstract Background Today an unprecedented amount of genetic sequence data is stored in publicly available repositories. For decades now, mitochondrial DNA (mtDNA) has been the workhorse of genetic studies, and as a result, there is a large volume of mtDNA data available in these repositories for a wide range of species. Indeed, whilst whole genome sequencing is an exciting prospect for the future, for most non-model organisms’ classical markers such as mtDNA remain widely used. By compiling existing data from multiple original studies, it is possible to build powerful new datasets capable of exploring many questions in ecology, evolution and conservation biology. One key question that these data can help inform is what happened in a species’ demographic past. However, compiling data in this manner is not trivial, there are many complexities associated with data extraction, data quality and data handling. Results Here we present the mtDNAcombine package, a collection of tools developed to manage some of the major decisions associated with handling multi-study sequence data with a particular focus on preparing sequence data for Bayesian skyline plot demographic reconstructions. Conclusions There is now more genetic information available than ever before and large meta-data sets offer great opportunities to explore new and exciting avenues of research. However, compiling multi-study datasets still remains a technically challenging prospect. The mtDNAcombine package provides a pipeline to streamline the process of downloading, curating, and analysing sequence data, guiding the process of compiling data sets from the online database GenBank.


2011 ◽  
Vol 30 (9) ◽  
pp. 1779-1786 ◽  
Author(s):  
Kun Yang ◽  
Hecui Zhang ◽  
Richard Converse ◽  
Yong Wang ◽  
Xiaoying Rong ◽  
...  

Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1435-1444 ◽  
Author(s):  
Robert M Stupar ◽  
Junqi Song ◽  
Ahmet L Tek ◽  
Zhukuan Cheng ◽  
Fenggao Dong ◽  
...  

Abstract The heterochromatin in eukaryotic genomes represents gene-poor regions and contains highly repetitive DNA sequences. The origin and evolution of DNA sequences in the heterochromatic regions are poorly understood. Here we report a unique class of pericentromeric heterochromatin consisting of DNA sequences highly homologous to the intergenic spacer (IGS) of the 18S•25S ribosomal RNA genes in potato. A 5.9-kb tandem repeat, named 2D8, was isolated from a diploid potato species Solanum bulbocastanum. Sequence analysis indicates that the 2D8 repeat is related to the IGS of potato rDNA. This repeat is associated with highly condensed pericentromeric heterochromatin at several hemizygous loci. The 2D8 repeat is highly variable in structure and copy number throughout the Solanum genus, suggesting that it is evolutionarily dynamic. Additional IGS-related repetitive DNA elements were also identified in the potato genome. The possible mechanism of the origin and evolution of the IGS-related repeats is discussed. We demonstrate that potato serves as an interesting model for studying repetitive DNA families because it is propagated vegetatively, thus minimizing the meiotic mechanisms that can remove novel DNA repeats.


Sign in / Sign up

Export Citation Format

Share Document