scholarly journals Shape-centered representations of bounded regions of space mediate the transformation of retinotopic representations into conscious perception of objects

2020 ◽  
Author(s):  
G. Vannuscorps ◽  
A. Galaburda ◽  
A. Caramazza

AbstractThe primary visual cortex represents the retinotopic orientation of visual primitives (edges, blobs, bars), but our conscious perception is of orientated objects (e.g., dogs, forks) in the environment. How this transformation operates remains unknown. We report here the study of a young woman presenting with an extraordinarily clear and informative visual disorder that affects highly specific aspects of object perception allowing precise inferences about the type and properties of visual representations that mediate this transformation. Davida perceives sharp-edged 2D bounded regions of space of medium to high contrast as if they were plane-rotated by 90, 180 or 270 degrees around their center, mirrored across their own axes, or both. In contrast, her perception of strongly blurred or very low contrast shapes, and of compound shapes emerging from a collection of bounded elements, is intact. The nature of her errors implies that visual perception is mediated by a representation of each bounded region of space in a shape-centered coordinate system aligned on either the shape’s most elongated part or on the shape’s axis of symmetry and centered either at the midpoint of the shape’s most elongated part or at the shape’s centroid. The selectivity of her disorder to sharp-edged medium to high-contrast stimuli additionally suggests that duplicate shape-centered representations are computed in parallel from information derived from the parvocellular and magnocellular subcortical channels and integrated precisely at the level at which shape representations must be mapped onto a behaviorally relevant frame of reference.

2008 ◽  
Vol 20 (7) ◽  
pp. 1847-1872 ◽  
Author(s):  
Mark C. W. van Rossum ◽  
Matthijs A. A. van der Meer ◽  
Dengke Xiao ◽  
Mike W. Oram

Neurons in the visual cortex receive a large amount of input from recurrent connections, yet the functional role of these connections remains unclear. Here we explore networks with strong recurrence in a computational model and show that short-term depression of the synapses in the recurrent loops implements an adaptive filter. This allows the visual system to respond reliably to deteriorated stimuli yet quickly to high-quality stimuli. For low-contrast stimuli, the model predicts long response latencies, whereas latencies are short for high-contrast stimuli. This is consistent with physiological data showing that in higher visual areas, latencies can increase more than 100 ms at low contrast compared to high contrast. Moreover, when presented with briefly flashed stimuli, the model predicts stereotypical responses that outlast the stimulus, again consistent with physiological findings. The adaptive properties of the model suggest that the abundant recurrent connections found in visual cortex serve to adapt the network's time constant in accordance with the stimulus and normalizes neuronal signals such that processing is as fast as possible while maintaining reliability.


2021 ◽  
Author(s):  
Nadine Dijkstra

Visual representations can be generated via feedforward or feedback processes. The extent to which these processes result in overlapping representations remains unclear. Previous work has shown that imagined stimuli elicit similar representations as perceived stimuli throughout the visual cortex. However, while representations during imagery are indeed only caused by feedback processing, neural processing during perception is an interplay of both feedforward and feedback processing. This means that any overlap could be due to overlap in feedback processes. In the current study we aimed to investigate this issue by characterizing the overlap between feedforward- and feedback-initiated category-representations during imagery, conscious perception and unconscious processing using fMRI. While all three conditions elicited stimulus representations in left lateral occipital cortex (LOC), significant similarities were only observed between imagery and conscious perception in this area. Furthermore, PPI-analyses revealed stronger connectivity between frontal areas and left LOC during conscious perception and imagery compared to unconscious processing. Together, these findings can be explained by the idea that long-range feedback modifies visual representations, thereby reducing neural overlap between purely feedforward and feedback-initiated stimulus representations measured by fMRI. Neural representations caused by feedback, either stimulus-driven (perception) or internally-driven (imagery), are however relatively similar.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe ◽  
J. Michael Moseley

We have designed and built an electronic device which compares the resistance of a defined area of vacuum evaporated material with a variable resistor. When the two resistances are matched, the device automatically disconnects the primary side of the substrate transformer and stops further evaporation.This approach to controlled evaporation in conjunction with the modified guns and evaporation source permits reliably reproducible multiple Pt shadow films from a single Pt wrapped carbon point source. The reproducibility from consecutive C point sources is also reliable. Furthermore, the device we have developed permits us to select a predetermined resistance so that low contrast high-resolution shadows, heavy high contrast shadows, or any grade in between can be selected at will. The reproducibility and quality of results are demonstrated in Figures 1-4 which represent evaporations at various settings of the variable resistor.


Author(s):  
María Carmen Sánchez-González ◽  
Raquel García-Oliver ◽  
José-María Sánchez-González ◽  
María-José Bautista-Llamas ◽  
José-Jesús Jiménez-Rejano ◽  
...  

In our work, we determined the value of visual acuity (VA) with ETDRS charts (Early Treatment Diabetic Retinopathy Study). The purpose of the study was to determine the measurement reliabilities, calculating the correlation coefficient interclass (ICC), the value of the error associated with the measure (SEM), and the minimal detectable change (MDC). Forty healthy subjects took part. The mean age was 23.5 ± 3.1 (19 to 26) years. Visual acuities were measured with ETDRS charts (96% ETDRS chart nº 2140) and (10% SLOAN Contrast Eye Test chart nº 2153). The measurements were made (at 4 m) under four conditions: Firstly, photopic conditions with high contrast (HC) and low contrast (LC) and after 15 min of visual rest, mesopic conditions with high and low contrast. Under photopic conditions and high contrast, the ICC = 0.866 and decreased to 0.580 when the luminosity and contrast decreased. The % MDC in the four conditions was always less than 10%. It was minor under photopic conditions and HC (5.83) and maximum in mesopic conditions and LC (9.70). Our results conclude a high reliability of the ETDRS test, which is higher in photopic and high contrast conditions and lower when the luminosity and contrast decreases.


2017 ◽  
Vol 44 (9) ◽  
pp. e153-e163 ◽  
Author(s):  
Damien Racine ◽  
Anaïs Viry ◽  
Fabio Becce ◽  
Sabine Schmidt ◽  
Alexandre Ba ◽  
...  

2020 ◽  
Author(s):  
Munendo Fujimichi ◽  
Hiroki Yamamoto ◽  
Jun Saiki

Are visual representations in the human early visual cortex necessary for visual working memory (VWM)? Previous studies suggest that VWM is underpinned by distributed representations across several brain regions, including the early visual cortex. Notably, in these studies, participants had to memorize images under consistent visual conditions. However, in our daily lives, we must retain the essential visual properties of objects despite changes in illumination or viewpoint. The role of brain regions—particularly the early visual cortices—in these situations remains unclear. The present study investigated whether the early visual cortex was essential for achieving stable VWM. Focusing on VWM for object surface properties, we conducted fMRI experiments while male and female participants performed a delayed roughness discrimination task in which sample and probe spheres were presented under varying illumination. By applying multi-voxel pattern analysis to brain activity in regions of interest, we found that the ventral visual cortex and intraparietal sulcus were involved in roughness VWM under changing illumination conditions. In contrast, VWM was not supported as robustly by the early visual cortex. These findings show that visual representations in the early visual cortex alone are insufficient for the robust roughness VWM representation required during changes in illumination.


2021 ◽  
Vol 2021 (29) ◽  
pp. 83-88
Author(s):  
Sahar Azimian ◽  
Farah Torkamani Azar ◽  
Seyed Ali Amirshahi

For a long time different studies have focused on introducing new image enhancement techniques. While these techniques show a good performance and are able to increase the quality of images, little attention has been paid to how and when overenhancement occurs in the image. This could possibly be linked to the fact that current image quality metrics are not able to accurately evaluate the quality of enhanced images. In this study we introduce the Subjective Enhanced Image Dataset (SEID) in which 15 observers are asked to enhance the quality of 30 reference images which are shown to them once at a low and another time at a high contrast. Observers were instructed to enhance the quality of the images to the point that any more enhancement will result in a drop in the image quality. Results show that there is an agreement between observers on when over-enhancement occurs and this point is closely similar no matter if the high contrast or the low contrast image is enhanced.


2008 ◽  
Vol 99 (1) ◽  
pp. 367-372 ◽  
Author(s):  
Thang Duong ◽  
Ralph D. Freeman

The firing rates of neurons in the central visual pathway vary with stimulus strength, but not necessarily in a linear manner. In the contrast domain, the neural response function for cells in the primary visual cortex is characterized by expansive and compressive nonlinearities at low and high contrasts, respectively. A compressive nonlinearity at high contrast is also found for early visual pathway neurons in the lateral geniculate nucleus (LGN). This mechanism affects processing in the visual cortex. A fundamentally related issue is the possibility of an expansive nonlinearity at low contrast in LGN. To examine this possibility, we have obtained contrast–response data for a population of LGN neurons. We find for most cells that the best-fit function requires an expansive component. Additionally, we have measured the responses of LGN neurons to m-sequence white noise and examined the static relationship between a linear prediction and actual spike rate. We find that this static relationship is well fit by an expansive nonlinear power law with average exponent of 1.58. These results demonstrate that neurons in early visual pathways exhibit expansive nonlinear responses at low contrasts. Although this thalamic expansive nonlinearity has been largely ignored in models of early visual processing, it may have important consequences because it potentially affects the interpretation of a variety of visual functions.


2010 ◽  
Vol 104 (2) ◽  
pp. 960-971 ◽  
Author(s):  
Joonyeol Lee ◽  
John H. R. Maunsell

It remains unclear how attention affects the tuning of individual neurons in visual cerebral cortex. Some observations suggest that attention preferentially enhances responses to low contrast stimuli, whereas others suggest that attention proportionally affects responses to all stimuli. Resolving how attention affects responses to different stimuli is essential for understanding the mechanism by which it acts. To explore the effects of attention on stimuli of different contrasts, we recorded from individual neurons in the middle temporal visual area (MT) of rhesus monkeys while shifting their attention between preferred and nonpreferred stimuli within their receptive fields. This configuration results in robust attentional modulation that makes it possible to readily distinguish whether attention acts preferentially on low contrast stimuli. We found no evidence for greater enhancement of low contrast stimuli. Instead, the strong attentional modulations were well explained by a model in which attention proportionally enhances responses to stimuli of all contrasts. These data, together with observations on the effects of attention on responses to other stimulus dimensions, suggest that the primary effect of attention in visual cortex may be to simply increase the strength of responses to all stimuli by the same proportion.


Sign in / Sign up

Export Citation Format

Share Document