scholarly journals No overlap between unconscious and imagined representations

2021 ◽  
Author(s):  
Nadine Dijkstra

Visual representations can be generated via feedforward or feedback processes. The extent to which these processes result in overlapping representations remains unclear. Previous work has shown that imagined stimuli elicit similar representations as perceived stimuli throughout the visual cortex. However, while representations during imagery are indeed only caused by feedback processing, neural processing during perception is an interplay of both feedforward and feedback processing. This means that any overlap could be due to overlap in feedback processes. In the current study we aimed to investigate this issue by characterizing the overlap between feedforward- and feedback-initiated category-representations during imagery, conscious perception and unconscious processing using fMRI. While all three conditions elicited stimulus representations in left lateral occipital cortex (LOC), significant similarities were only observed between imagery and conscious perception in this area. Furthermore, PPI-analyses revealed stronger connectivity between frontal areas and left LOC during conscious perception and imagery compared to unconscious processing. Together, these findings can be explained by the idea that long-range feedback modifies visual representations, thereby reducing neural overlap between purely feedforward and feedback-initiated stimulus representations measured by fMRI. Neural representations caused by feedback, either stimulus-driven (perception) or internally-driven (imagery), are however relatively similar.

2012 ◽  
Vol 24 (4) ◽  
pp. 819-829 ◽  
Author(s):  
Henry Railo ◽  
Niina Salminen-Vaparanta ◽  
Linda Henriksson ◽  
Antti Revonsuo ◽  
Mika Koivisto

Chromatic information is processed by the visual system both at an unconscious level and at a level that results in conscious perception of color. It remains unclear whether both conscious and unconscious processing of chromatic information depend on activity in the early visual cortex or whether unconscious chromatic processing can also rely on other neural mechanisms. In this study, the contribution of early visual cortex activity to conscious and unconscious chromatic processing was studied using single-pulse TMS in three time windows 40–100 msec after stimulus onset in three conditions: conscious color recognition, forced-choice discrimination of consciously invisible color, and unconscious color priming. We found that conscious perception and both measures of unconscious processing of chromatic information depended on activity in early visual cortex 70–100 msec after stimulus presentation. Unconscious forced-choice discrimination was above chance only when participants reported perceiving some stimulus features (but not color).


2020 ◽  
Author(s):  
G. Vannuscorps ◽  
A. Galaburda ◽  
A. Caramazza

AbstractThe primary visual cortex represents the retinotopic orientation of visual primitives (edges, blobs, bars), but our conscious perception is of orientated objects (e.g., dogs, forks) in the environment. How this transformation operates remains unknown. We report here the study of a young woman presenting with an extraordinarily clear and informative visual disorder that affects highly specific aspects of object perception allowing precise inferences about the type and properties of visual representations that mediate this transformation. Davida perceives sharp-edged 2D bounded regions of space of medium to high contrast as if they were plane-rotated by 90, 180 or 270 degrees around their center, mirrored across their own axes, or both. In contrast, her perception of strongly blurred or very low contrast shapes, and of compound shapes emerging from a collection of bounded elements, is intact. The nature of her errors implies that visual perception is mediated by a representation of each bounded region of space in a shape-centered coordinate system aligned on either the shape’s most elongated part or on the shape’s axis of symmetry and centered either at the midpoint of the shape’s most elongated part or at the shape’s centroid. The selectivity of her disorder to sharp-edged medium to high-contrast stimuli additionally suggests that duplicate shape-centered representations are computed in parallel from information derived from the parvocellular and magnocellular subcortical channels and integrated precisely at the level at which shape representations must be mapped onto a behaviorally relevant frame of reference.


2021 ◽  
Author(s):  
Sunwoo Kwon ◽  
Krystel R. Huxlin ◽  
Jude F. Mitchell

AbstractVisual pathways that guide actions do not necessarily mediate conscious perception. Patients with primary visual cortex (V1) damage lose conscious perception but often retain unconscious abilities (e.g. blindsight). Here, we asked if saccade accuracy and post-saccadic following responses (PFRs) that automatically track target motion upon saccade landing are retained when conscious perception is lost. We contrasted these behaviors in the blind and intact fields of 8 chronic V1-stroke patients, and in 8 visually-intact controls. Saccade accuracy was relatively normal in all cases. Stroke patients also had normal PFR in their intact fields, but no PFR in their blind fields. Thus, V1 damage did not spare the unconscious visual processing necessary for automatic, post-saccadic smooth eye movements. Importantly, visual training that recovered motion perception in the blind field did not restore the PFR, suggesting a clear dissociation between pathways mediating perceptual restoration and automatic actions in the V1-damaged visual system.


2021 ◽  
Author(s):  
Miles Wischnewski ◽  
Marius V. Peelen

Objects can be recognized based on their intrinsic features, including shape, color, and texture. In daily life, however, such features are often not clearly visible, for example when objects appear in the periphery, in clutter, or at a distance. Interestingly, object recognition can still be highly accurate under these conditions when objects are seen within their typical scene context. What are the neural mechanisms of context-based object recognition? According to parallel processing accounts, context-based object recognition is supported by the parallel processing of object and scene information in separate pathways. Output of these pathways is then combined in downstream regions, leading to contextual benefits in object recognition. Alternatively, according to feedback accounts, context-based object recognition is supported by feedback from scene-selective to object-selective regions. Here, in three pre-registered transcranial magnetic stimulation (TMS) experiments, we tested a key prediction of the feedback hypothesis: that scene-selective cortex causally and selectively supports context-based object recognition before object-selective cortex does. Early visual cortex (EVC), object-selective lateral occipital cortex (LOC), and scene-selective occipital place area (OPA) were stimulated at three time points relative to stimulus onset while participants categorized degraded objects in scenes and intact objects in isolation, in different trials. Results confirmed our predictions: relative to isolated object recognition, context-based object recognition was selectively and causally supported by OPA at 160-200 ms after onset, followed by LOC at 260-300 ms after onset. These results indicate that context-based expectations facilitate object recognition by disambiguating object representations in visual cortex.


2004 ◽  
Vol 101 (1) ◽  
pp. 114-118 ◽  
Author(s):  
Takanobu Kaido ◽  
Tohru Hoshida ◽  
Toshiaki Taoka ◽  
Toshisuke Sakaki

Object. The lateral occipital cortex in humans is known as the “extrastriate visual cortex.” It is, however, an unexplored field of research, and the anatomical nomenclature for its surface has still not been standardized. This study was designed to investigate whether the lateral occipital cortex in humans has retinotopic representation. Methods. Four right-handed patients with a diagnosis of intractable epilepsy from space-occupying lesions in the occipital lobe or epilepsy originating in the occipital lobe received permanently implanted subdural electrodes. Electrical cortical stimulation was applied directly applied to the brain through metal electrodes by using a biphasic stimulator. The location of each electrode was measured on a lateral skull x-ray study. Each patient considered a whiteboard with vertical and horizontal median lines. The patient was asked to look at the midpoint on the whiteboard. If a visual hallucination or illusion occurred, the patient recorded its outline, shape, color, location, and motion on white paper one tenth the size of, and with vertical and horizontal median lines similar to those on, the whiteboard. Polar angles and eccentricities of the midpoints of the phosphenes from the coordinate origin were measured on the paper. On stimulation of the lateral occipital lobe, 44 phosphenes occurred. All phosphenes were circular or dotted, with a diameter of approximately 1 cm, except one that was like a curtain in the peripheral end of the upper and lower visual fields on stimulation of the parietooccipital region. All phosphenes appeared in the visual field contralateral to the cerebral hemisphere stimulated. On stimulation of the lateral occipital lobe, 22 phosphenes moved centrifugally or toward a horizontal line. From three-dimensional scatterplots and contour maps of the polar angles and eccentricities in relation to the x-ray coordinates of the electrodes, one can infer that the lateral occipital cortex in humans has retinotopic representation. Conclusions. The authors found that phosphenes induced by electrical cortical stimulation of the lateral occipital cortex represent retinotopy. From these results one can assert that visual field representation with retinotopic relation exists in the extrastriate visual cortex.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Miles Wischnewski ◽  
Marius V Peelen

Objects can be recognized based on their intrinsic features, including shape, color, and texture. In daily life, however, such features are often not clearly visible, for example when objects appear in the periphery, in clutter, or at a distance. Interestingly, object recognition can still be highly accurate under these conditions when objects are seen within their typical scene context. What are the neural mechanisms of context-based object recognition? According to parallel processing accounts, context-based object recognition is supported by the parallel processing of object and scene information in separate pathways. Output of these pathways is then combined in downstream regions, leading to contextual benefits in object recognition. Alternatively, according to feedback accounts, context-based object recognition is supported by (direct or indirect) feedback from scene-selective to object-selective regions. Here, in three pre-registered transcranial magnetic stimulation (TMS) experiments, we tested a key prediction of the feedback hypothesis: that scene-selective cortex causally and selectively supports context-based object recognition before object-selective cortex does. Early visual cortex (EVC), object-selective lateral occipital cortex (LOC), and scene-selective occipital place area (OPA) were stimulated at three time points relative to stimulus onset while participants categorized degraded objects in scenes and intact objects in isolation, in different trials. Results confirmed our predictions: relative to isolated object recognition, context-based object recognition was selectively and causally supported by OPA at 160–200 ms after onset, followed by LOC at 260–300 ms after onset. These results indicate that context-based expectations facilitate object recognition by disambiguating object representations in the visual cortex.


2014 ◽  
Author(s):  
Linda Henriksson ◽  
Seyed-Mahdi Khaligh-Razavi ◽  
Kendrick Kay ◽  
Nikolaus Kriegeskorte

Intrinsic cortical dynamics are thought to underlie trial-to-trial variability of visually evoked responses in animal models. Understanding their function in the context of sensory processing and representation is a major current challenge. Here we report that intrinsic cortical dynamics strongly affect the representational geometry of a brain region, as reflected in response-pattern dissimilarities, and exaggerate the similarity of representations between brain regions. We characterized the representations in several human visual areas by representational dissimilarity matrices (RDMs) constructed from fMRI response-patterns for natural image stimuli. The RDMs of different visual areas were highly similar when the response-patterns were estimated on the basis of the same trials (sharing intrinsic cortical dynamics), and quite distinct when patterns were estimated on the basis of separate trials (sharing only the stimulus-driven component). We show that the greater similarity of the representational geometries can be explained by the coherent fluctuations of regional-mean activation within visual cortex, reflecting intrinsic dynamics. Using separate trials to study stimulus-driven representations revealed clearer distinctions between the representational geometries: a Gabor wavelet pyramid model explained representational geometry in visual areas V1–3 and a categorical animate–inanimate model in the object-responsive lateral occipital cortex.


2013 ◽  
Vol 25 (9) ◽  
pp. 1493-1503 ◽  
Author(s):  
Marjan Persuh ◽  
Tony Ro

Although examples of unconscious shape priming have been well documented, whether such priming requires early visual cortex (V1/V2) has not been established. In the current study, we used TMS of V1/V2 at varying temporal intervals to suppress the visibility of preceding shape primes while the interval between primes and targets was kept constant. Our results show that, although conscious perception requires V1/V2, unconscious priming can occur without V1/V2 at an intermediate temporal interval but not at early (5–25 msec) or later (65–125 msec) stages of processing. Because the later time window of unconscious priming suppression has been proposed to interfere with feedback processing, our results further suggest that feedback processing is also essential for unconscious priming and may not be a sufficient condition for conscious vision.


2019 ◽  
Vol 31 (7) ◽  
pp. 948-960 ◽  
Author(s):  
Tony Ro

Variability in perception between individuals may be a consequence of different inherent neural processing speeds. To assess whether alpha oscillations systematically reflect a feedback pacing mechanism for cortical processing during visual perception, comparisons were made between alpha oscillations, visual suppression from TMS, visual evoked responses, and metacontrast masking. Peak alpha oscillation frequencies, measured through scalp EEG recordings, significantly correlated with the optimum latencies for visual suppression from TMS of early visual cortex. Individuals with shorter alpha periods (i.e., higher peak alpha frequencies) processed visual information faster than those with longer alpha periods (i.e., lower peak alpha frequencies). Moreover, peak alpha oscillation periods and optimum TMS visual suppression latencies predicted the latencies of late but not early visual evoked responses. Together, these findings demonstrate an important role of alpha oscillatory and late feedback activity in visual cortex for conscious perception. They also show that the timing for visual awareness varies across individuals, depending on the pace of one's endogenous oscillatory cycling frequency.


Sign in / Sign up

Export Citation Format

Share Document