scholarly journals Effects of Alzheimer’s disease and formalin fixation on the different mineralised-iron forms in the human brain

Author(s):  
Louise van der Weerd ◽  
Anton Lefering ◽  
Andrew Webb ◽  
Ramon Egli ◽  
Lucia Bossoni

ABSTRACTIron accumulation in the brain is a phenomenon common to many neurodegenerative diseases, perhaps most notably Alzheimer’s disease (AD).We present here magnetic analyses of post-mortem brain tissue of patients who had severe Alzheimer’s disease, and compare the results with those from healthy controls. Isothermal remanent magnetization experiments were performed to assess the extent to which different magnetic carriers are affected by AD pathology and formalin fixation.While Alzheimer’s brain material did not show higher levels of magnetite/maghemite nanoparticles than corresponding controls, the ferrihydrite mineral, known to be found within the core of ferritin proteins and hemosiderin aggregates, almost doubled in concentration in patients with Alzheimer’s pathology, strengthening the conclusions of our previous studies. As part of this study, we also investigated the effects of sample preparation, by performing experiments on frozen tissue as well as tissue which had been fixed in formalin for a period of five months. Our results showed that the two different preparations did not critically affect the concentration of magnetic carriers in brain tissue, as observable by SQUID magnetometry.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Louise van der Weerd ◽  
Anton Lefering ◽  
Andrew Webb ◽  
Ramon Egli ◽  
Lucia Bossoni

Abstract Iron accumulation in the brain is a phenomenon common to many neurodegenerative diseases, perhaps most notably Alzheimer’s disease (AD). We present here magnetic analyses of post-mortem brain tissue of patients who had severe Alzheimer’s disease, and compare the results with those from healthy controls. Isothermal remanent magnetization experiments were performed to assess the extent to which different magnetic carriers are affected by AD pathology and formalin fixation. While Alzheimer’s brain material did not show higher levels of magnetite/maghemite nanoparticles than corresponding controls, the ferrihydrite mineral, known to be found within the core of ferritin proteins and hemosiderin aggregates, almost doubled in concentration in patients with Alzheimer’s pathology, strengthening the conclusions of our previous studies. As part of this study, we also investigated the effects of sample preparation, by performing experiments on frozen tissue as well as tissue which had been fixed in formalin for a period of 5 months. Our results showed that the two different preparations did not critically affect the concentration of magnetic carriers in brain tissue, as observable by SQUID magnetometry.


2016 ◽  
Vol 12 ◽  
pp. P462-P462
Author(s):  
Martina M. Hughes ◽  
Beatriz G. Perez-Nievas ◽  
Claire Troakes ◽  
Michael Perkinton ◽  
Diane P. Hanger ◽  
...  

2018 ◽  
Vol 12 ◽  
Author(s):  
Simin Mahinrad ◽  
Marjolein Bulk ◽  
Isabelle van der Velpen ◽  
Ahmed Mahfouz ◽  
Willeke van Roon-Mom ◽  
...  

2019 ◽  
Vol 1124 ◽  
pp. 165-172
Author(s):  
Daniela Delfino ◽  
Diana Valeria Rossetti ◽  
Claudia Martelli ◽  
Ilaria Inserra ◽  
Federica Vincenzoni ◽  
...  

2010 ◽  
Vol 16 (8) ◽  
pp. 836-847 ◽  
Author(s):  
C Conejero-Goldberg ◽  
T M Hyde ◽  
S Chen ◽  
U Dreses-Werringloer ◽  
M M Herman ◽  
...  

1974 ◽  
Vol 124 (580) ◽  
pp. 280-287 ◽  
Author(s):  
C. G. Gottfries ◽  
Åke Kjällquist ◽  
Urban Pontén ◽  
B. E. Roos ◽  
G. Sundbärg

Determinations of acid monoamine metabolites, such as homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), in cerebrospinal fluid (CSF) give valid information on the metabolism of the corresponding amines in the brain tissue (Moir et al., 1970; Roos, 1970). The monoamine metabolites in the CSF are related to age. The concentrations of HVA and 5-HIAA increase with age (Gottfries et al., 1971). Probenecid blocks the elimination of HVA and 5-HIAA from brain tissue to blood (Neff et al., 1964, 1967; Werdinius, 1966) and from CSF to blood (Guldberg et al., 1966; Olsson and Roos, 1968). Probenecid thus normally induces an increase in the concentrations of the acid monoamine metabolites in the CSF, which is related to the turnover of monoamines in the brain tissue.


2020 ◽  
Vol 28 (1) ◽  
pp. 19-52 ◽  
Author(s):  
Renu Chandra Segaran ◽  
Li Yun Chan ◽  
Hong Wang ◽  
Gautam Sethi ◽  
Feng Ru Tang

Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Guowei Ma ◽  
Mingyan Liu ◽  
Ke Du ◽  
Xin Zhong ◽  
Shiqiang Gong ◽  
...  

Background. Early diagnosis of Alzheimer’s disease (AD) is an urgent point for AD prevention and treatment. The biomarkers of AD still remain indefinite. Based on the bioinformatics analysis of mRNA differential expressions in the brain tissues and the peripheral blood samples of Alzheimer’s disease (AD) patients, we investigated the target mRNAs that could be used as an AD biomarker and developed a new effective, practical clinical examination program. Methods. We compared the AD peripheral blood mononuclear cells (PBMCs) expression dataset (GEO accession GSE4226 and GSE18309) with AD brain tissue expression datasets (GEO accessions GSE1297 and GSE5281) from GEO in the present study. The GEO gene database was used to download the appropriate gene expression profiles to analyze the differential mRNA expressions between brain tissue and blood of AD patients and normal elderly. The Venn diagram was used to screen out the differential expression of mRNAs between the brain tissue and blood. The protein-protein interaction network map (PPI) was used to view the correlation between the possible genes. GO (gene ontology) and KEGG (Kyoto Gene and Genomic Encyclopedia) were used for gene enrichment analysis to determine the major affected genes and the function or pathway. Results. Bioinformatics analysis revealed that there were differentially expressed genes in peripheral blood and hippocampus of AD patients. There were 4958 differential mRNAs in GSE18309, 577 differential mRNAs in GSE4226 in AD PBMCs sample, 7464 differential mRNAs in GSE5281, and 317 differential mRNAs in GSE129 in AD brain tissues, when comparing between AD patients and healthy elderly. Two mRNAs of RAB7A and ITGB1 coexpressed in hippocampus and peripheral blood were screened. Furthermore, functions of differential genes were enriched by the PPI network map, GO, and KEGG analysis, and finally the chemotaxis, adhesion, and inflammatory reactions were found out, respectively. Conclusions. ITGB1 and RAB7A mRNA expressions were both changed in hippocampus and PBMCs, highly suggested being used as an AD biomarker with AD. Also, according to the results of this analysis, it is indicated that we can test the blood routine of the elderly for 2-3 years at a frequency of 6 months or one year. When a patient continuously detects the inflammatory manifestations, it is indicated as a potentially high-risk AD patient for AD prevention.


Sign in / Sign up

Export Citation Format

Share Document