Cross-neutralization antibodies against SARS-CoV-2 and RBD mutations from convalescent patient antibody libraries

Author(s):  
Yan Lou ◽  
Wenxiang Zhao ◽  
Haitao Wei ◽  
Min Chu ◽  
Ruihua Chao ◽  
...  

AbstractThe emergence of coronavirus disease 2019 (COVID-19) pandemic led to an urgent need to develop therapeutic interventions. Among them, neutralizing antibodies play crucial roles for preventing viral infections and contribute to resolution of infection. Here, we describe the generation of antibody libraries from 17 different COVID-19 recovered patients and screening of neutralizing antibodies to SARS-CoV-2. After 3 rounds of panning, 456 positive phage clones were obtained with high affinity to RBD (receptor binding domain). Then the positive clones were sequenced and reconstituted into whole human IgG for epitope binning assays. After that, all 19 IgG were classified into 6 different epitope groups or Bins. Although all these antibodies were shown to have ability to bind RBD, the antibodies in Bin2 have more superiority to inhibit the interaction between spike protein and angiotensin converting enzyme 2 receptor (ACE2). Most importantly, the antibodies from Bin2 can also strongly bind with mutant RBDs (W463R, R408I, N354D, V367F and N354D/D364Y) derived from SARS-CoV-2 strain with increased infectivity, suggesting the great potential of these antibodies in preventing infection of SARS-CoV-2 and its mutations. Furthermore, these neutralizing antibodies strongly restrict the binding of RBD to hACE2 overexpressed 293T cells. Consistently, these antibodies effectively neutralized pseudovirus entry into hACE2 overexpressed 293T cells. In Vero-E6 cells, these antibodies can even block the entry of live SARS-CoV-2 into cells at only 12.5 nM. These results suggest that these neutralizing human antibodies from the patient-derived antibody libraries have the potential to become therapeutic agents against SARS-CoV-2 and its mutants in this global pandemic.

2021 ◽  
pp. eabf1906
Author(s):  
Bryan E. Jones ◽  
Patricia L. Brown-Augsburger ◽  
Kizzmekia S. Corbett ◽  
Kathryn Westendorf ◽  
Julian Davies ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a public health threat for which preventive and therapeutic agents are urgently needed. Neutralizing antibodies are a key class of therapeutics which may bridge widespread vaccination campaigns and offer a treatment solution in populations less responsive to vaccination. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555 (also known as bamlanivimab), a potent anti-spike neutralizing antibody from a hospitalized, convalescent patient with coronavirus disease 2019 (COVID-19). Biochemical, structural, and functional characterization of LY-CoV555 revealed high-affinity binding to the receptor-binding domain, angiotensin converting enzyme 2 binding inhibition, and potent neutralizing activity. A pharmacokinetic study of LY-CoV555 conducted in cynomolgus monkeys demonstrated a mean half-life of 13 days, and clearance of 0.22 mL/hr/kg, consistent with a typical human therapeutic antibody. In a rhesus macaque challenge model, prophylactic doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract in samples collected through study Day 6 following viral inoculation. This antibody has entered clinical testing and is being evaluated across a spectrum of COVID-19 indications, including prevention and treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keng-Chang Tsai ◽  
Yu-Ching Lee ◽  
Tien-Sheng Tseng

The rapid spread of SARS-CoV-2 has caused the COVID-19 pandemic, resulting in the collapse of medical care systems and economic depression worldwide. To combat COVID-19, neutralizing antibodies have been investigated and developed. However, the evolutions (mutations) of the receptor-binding domain (RBD) of SARS-CoV-2 enable escape from neutralization by these antibodies, further impairing recognition by the human immune system. Thus, it is critical to investigate and predict the putative mutations of RBD that escape neutralizing immune responses. Here, we employed computational analyses to comprehensively investigate the mutational effects of RBD on binding to neutralizing antibodies and angiotensin-converting enzyme 2 (ACE2) and demonstrated that the RBD residues K417, L452, L455, F456, E484, G485, F486, F490, Q493, and S494 were consistent with clinically emerging variants or experimental observations of attenuated neutralizations. We also revealed common hotspots, Y449, L455, and Y489, that exerted comparable destabilizing effects on binding to both ACE2 and neutralizing antibodies. Our results provide valuable information on the putative effects of RBD variants on interactions with neutralizing antibodies. These findings provide insights into possible evolutionary hotspots that can escape recognition by these antibodies. In addition, our study results will benefit the development and design of vaccines and antibodies to combat the newly emerging variants of SARS-CoV-2.


Science ◽  
2020 ◽  
Vol 370 (6519) ◽  
pp. 950-957 ◽  
Author(s):  
M. Alejandra Tortorici ◽  
Martina Beltramello ◽  
Florian A. Lempp ◽  
Dora Pinto ◽  
Ha V. Dang ◽  
...  

Efficient therapeutic options are needed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has caused more than 922,000 fatalities as of 13 September 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo–electron microscopy structures show that S2E12 and S2M11 competitively block angiotensin-converting enzyme 2 (ACE2) attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains. Antibody cocktails that include S2M11, S2E12, or the previously identified S309 antibody broadly neutralize a panel of circulating SARS-CoV-2 isolates and activate effector functions. Our results pave the way to implement antibody cocktails for prophylaxis or therapy, circumventing or limiting the emergence of viral escape mutants.


2021 ◽  
Author(s):  
Marta Alenquer ◽  
Filipe Ferreira ◽  
Diana Lousa ◽  
Mariana Valério ◽  
Mónica Medina-Lopes ◽  
...  

AbstractUnderstanding SARS-CoV-2 evolution and host immunity is critical to control COVID-19 pandemics. At the core is an arms-race between SARS-CoV-2 antibody and angiotensin-converting enzyme 2 (ACE2) recognition, a function of the viral protein spike and, predominantly, of its receptor-binding-domain (RBD). Mutations in spike impacting antibody or ACE2 binding are known, but the effect of mutation synergy is less explored. We engineered 22 spike-pseudotyped lentiviruses containing individual and combined mutations, and confirmed that E484K evades antibody neutralization elicited by infection or vaccination, a capacity augmented when complemented by K417N and N501Y mutations. In silico analysis provided an explanation for E484K immune evasion. E484 frequently engages in interactions with antibodies but not with ACE2. Importantly, we identified a novel amino acid of concern, S494, which shares a similar pattern. Using the already circulating mutation S494P, we found that it reduces antibody neutralization of convalescent sera. This amino acid emerges as an additional hotspot for immune evasion and a target for therapies, vaccines and diagnostics.One-Sentence SummaryAmino acids in SARS-CoV-2 spike protein implicated in immune evasion are biased for binding to neutralizing antibodies but dispensable for binding the host receptor angiotensin-converting enzyme 2.


2021 ◽  
Author(s):  
Vincent Dussupt ◽  
Rajeshwer S. Sankhala ◽  
Letzibeth Mendez-Rivera ◽  
Samantha M. Townsley ◽  
Fabian Schmidt ◽  
...  

AbstractPrevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.


Science ◽  
2021 ◽  
pp. eabi9745
Author(s):  
Yongfei Cai ◽  
Jun Zhang ◽  
Tianshu Xiao ◽  
Christy L. Lavine ◽  
Shaun Rawson ◽  
...  

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains in the COVID-19 pandemic. We report here cryo-EM structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Amino acid substitutions in the B.1.1.7 protein increase the accessibility of its receptor binding domain and also the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement may account for the increased transmissibility. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, making it resistant to some potent neutralizing antibodies. These findings provide structural details on how SARS-CoV-2 has evolved to enhance viral fitness and immune evasion.


Author(s):  
Hua-Long Xiong ◽  
Yang-Tao Wu ◽  
Jia-Li Cao ◽  
Ren Yang ◽  
Jian Ma ◽  
...  

AbstractThe global pandemic of Coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable in vitro neutralization assay is very important for the development of neutralizing antibodies, vaccines and other inhibitors. In this study, G protein-deficient vesicular stomatitis virus (VSVdG) bearing full-length and truncated spike (S) protein of SARS-CoV-2 were evaluated. The virus packaging efficiency of VSV-SARS-CoV-2-Sdel18 (S with C-terminal 18 amino acid truncation) is much higher than VSV-SARS-CoV-2-S. A neutralization assay for antibody screening and serum neutralizing titer quantification was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and human angiotensin-converting enzyme 2 (ACE2) overexpressed BHK21 cell (BHK21-hACE2). The experimental results can be obtained by automatically counting EGFP positive cell number at 12 hours after infection, making the assay convenient and high-throughput. The serum neutralizing titer of COVID-19 convalescent patients measured by VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with live SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting receptor binding domain (RBD) of SARS-CoV-2-S were obtained. This efficient and reliable pseudovirus assay model could facilitate the development of new drugs and vaccines.


2021 ◽  
Author(s):  
Leili Zhang ◽  
Tien Huynh ◽  
Binquan Luan

The highly infectious SARS-CoV-2 variant B.1.617 with double mutations E484Q and L452R in the receptor binding domain (RBD) of SARS-CoV-2's spike protein is worrisome. Demonstrated in crystal structures, the residues 452 and 484 in RBD are not in direct contact with interfacial residues in the angiotensin converting enzyme 2 (ACE2). This suggests that albeit there are some possibly nonlocal effects, the E484Q and L452R mutations might not significantly affect RBD's binding with ACE2, which is an important step for viral entry into host cells. Thus, without the known molecular mechanism, these two successful mutations (from the point of view of SARS-CoV-2) can be hypothesized to evade human antibodies. Using in silico all-atom molecular dynamics (MD) simulation as well as deep learning (DL) approaches, here we show that these two mutations significantly reduce the binding affinity between RBD and the antibody LY-CoV555 (also named as Bamlanivimab) that was proven to be efficacious for neutralizing the wide-type SARS-CoV-2. With the revealed molecular mechanism on how L452R and E484K evade LY-CoV555, we expect that more specific therapeutic antibodies can be accordingly designed and/or a precision mixing of antibodies can be achieved in a cocktail treatment for patients infected with the variant B.1.617.


2020 ◽  
Author(s):  
Dominic Narang ◽  
Matthew Balmer ◽  
D. Andrew James ◽  
Derek Wilson

This study provides an HDX-MS based analysis of the interaction between the SARS-CoV-2 spike protein and the human Angiotensin Converting Enzyme 2. <div><br></div><div>- The data agree exactly with the X-ray co-crystal structure of this complex, but provide additional information based on shifts in dynamics that are observed just outside the interface. </div><div><br></div><div>- These dynamic changes occur specifically in regions that are the primary targets of neutralizing antibodies that target spike protein, suggesting that the neutralization mechanism may result from suppression of dynamic shifts in the spike Receptor Binding Domain (RBD) that are necessary for favorable binding thermodynamics in the spike / ACE2 interaction.</div>


Author(s):  
Lanying Du ◽  
Yang Yang ◽  
Xiujuan Zhang

AbstractSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initiates the infection process by binding to the viral cellular receptor angiotensin-converting enzyme 2 through the receptor-binding domain (RBD) in the S1 subunit of the viral spike (S) protein. This event is followed by virus–cell membrane fusion mediated by the S2 subunit, which allows virus entry into the host cell. Therefore, the SARS-CoV-2 S protein is a key therapeutic target, and prevention and treatment of coronavirus disease 2019 (COVID-19) have focused on the development of neutralizing monoclonal antibodies (nAbs) that target this protein. In this review, we summarize the nAbs targeting SARS-CoV-2 proteins that have been developed to date, with a focus on the N-terminal domain and RBD of the S protein. We also describe the roles that binding affinity, neutralizing activity, and protection provided by these nAbs play in the prevention and treatment of COVID-19 and discuss the potential to improve nAb efficiency against multiple SARS-CoV-2 variants. This review provides important information for the development of effective nAbs with broad-spectrum activity against current and future SARS-CoV-2 strains.


Sign in / Sign up

Export Citation Format

Share Document