scholarly journals Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms

Science ◽  
2020 ◽  
Vol 370 (6519) ◽  
pp. 950-957 ◽  
Author(s):  
M. Alejandra Tortorici ◽  
Martina Beltramello ◽  
Florian A. Lempp ◽  
Dora Pinto ◽  
Ha V. Dang ◽  
...  

Efficient therapeutic options are needed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has caused more than 922,000 fatalities as of 13 September 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo–electron microscopy structures show that S2E12 and S2M11 competitively block angiotensin-converting enzyme 2 (ACE2) attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains. Antibody cocktails that include S2M11, S2E12, or the previously identified S309 antibody broadly neutralize a panel of circulating SARS-CoV-2 isolates and activate effector functions. Our results pave the way to implement antibody cocktails for prophylaxis or therapy, circumventing or limiting the emergence of viral escape mutants.

2021 ◽  
Vol 118 (19) ◽  
pp. e2101918118
Author(s):  
Phillip Pymm ◽  
Amy Adair ◽  
Li-Jin Chan ◽  
James P. Cooney ◽  
Francesca L. Mordant ◽  
...  

Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.


2021 ◽  
Author(s):  
Raoul De Gasparo ◽  
Mattia Pedotti ◽  
Luca Simonelli ◽  
Petr Nickl ◽  
Frauke Muecksch ◽  
...  

SummaryNeutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19)1,2. We developed a bispecific, IgG1-like molecule based on two antibodies derived from COVID-19 convalescent donors, C121 and C1353. CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, completely prevents S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor. Furthermore, CoV-X2 recognizes a broad panel of RBD variants and neutralizes SARS-CoV-2 and the escape mutants generated by the single monoclonals at sub-nanomolar concentrations. In a novel model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, combining into a single molecule the advantages of antibody cocktails.


Author(s):  
Leo Hanke ◽  
Laura Vidakovics Perez ◽  
Daniel J. Sheward ◽  
Hrishikesh Das ◽  
Tim Schulte ◽  
...  

AbstractSARS-CoV-2 is the etiologic agent of COVID-19, currently causing a devastating pandemic for which pharmacological interventions are urgently needed. The virus enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. The nanobody binds with high affinity in the low nM range to the RBD, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the ‘up’ and ‘down’ conformations and that Ty1 sterically hinders RBD-ACE2 binding. This 12.8 kDa nanobody does not need an Fc domain to neutralize SARS-CoV-2, and can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.


Author(s):  
Bin Ju ◽  
Qi Zhang ◽  
Xiangyang Ge ◽  
Ruoke Wang ◽  
Jiazhen Yu ◽  
...  

AbstractThe pandemic caused by emerging coronavirus SARS-CoV-2 presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. SARS-CoV-2 cellular entry depends on binding between the viral Spike protein receptor-binding domain (RBD) and the angiotensin converting enzyme 2 (ACE2) target cell receptor. Here, we report on the isolation and characterization of 206 RBD-specific monoclonal antibodies (mAbs) derived from single B cells of eight SARS-CoV-2 infected individuals. These mAbs come from diverse families of antibody heavy and light chains without apparent enrichment for particular families in the repertoire. In samples from one patient selected for further analyses, we found coexistence of germline and germline divergent clones. Both clone types demonstrated impressive binding and neutralizing activity against pseudovirus and live SARS-CoV-2. However, the antibody neutralizing potency is determined by competition with ACE2 receptor for RBD binding. Surprisingly, none of the SARS-CoV-2 antibodies nor the infected plasma cross-reacted with RBDs from either SARS-CoV or MERS-CoV although substantial plasma cross-reactivity to the trimeric Spike proteins from SARS-CoV and MERS-CoV was found. These results suggest that antibody response to RBDs is viral species-specific while that cross-recognition target regions outside the RBD. The specificity and neutralizing characteristics of this plasma cross-reactivity requires further investigation. Nevertheless, the diverse and potent neutralizing antibodies identified here are promising candidates for prophylactic and therapeutic SARS-CoV-2 interventions.


2009 ◽  
Vol 24 (3) ◽  
pp. 150-154 ◽  
Author(s):  
N. E. Sharapova ◽  
A. P. Kotnova ◽  
Z. M. Galushkina ◽  
N. N. Poletaeva ◽  
N. V. Lavrova ◽  
...  

Author(s):  
Yan Lou ◽  
Wenxiang Zhao ◽  
Haitao Wei ◽  
Min Chu ◽  
Ruihua Chao ◽  
...  

AbstractThe emergence of coronavirus disease 2019 (COVID-19) pandemic led to an urgent need to develop therapeutic interventions. Among them, neutralizing antibodies play crucial roles for preventing viral infections and contribute to resolution of infection. Here, we describe the generation of antibody libraries from 17 different COVID-19 recovered patients and screening of neutralizing antibodies to SARS-CoV-2. After 3 rounds of panning, 456 positive phage clones were obtained with high affinity to RBD (receptor binding domain). Then the positive clones were sequenced and reconstituted into whole human IgG for epitope binning assays. After that, all 19 IgG were classified into 6 different epitope groups or Bins. Although all these antibodies were shown to have ability to bind RBD, the antibodies in Bin2 have more superiority to inhibit the interaction between spike protein and angiotensin converting enzyme 2 receptor (ACE2). Most importantly, the antibodies from Bin2 can also strongly bind with mutant RBDs (W463R, R408I, N354D, V367F and N354D/D364Y) derived from SARS-CoV-2 strain with increased infectivity, suggesting the great potential of these antibodies in preventing infection of SARS-CoV-2 and its mutations. Furthermore, these neutralizing antibodies strongly restrict the binding of RBD to hACE2 overexpressed 293T cells. Consistently, these antibodies effectively neutralized pseudovirus entry into hACE2 overexpressed 293T cells. In Vero-E6 cells, these antibodies can even block the entry of live SARS-CoV-2 into cells at only 12.5 nM. These results suggest that these neutralizing human antibodies from the patient-derived antibody libraries have the potential to become therapeutic agents against SARS-CoV-2 and its mutants in this global pandemic.


1991 ◽  
Vol 196 (2) ◽  
pp. 469-474 ◽  
Author(s):  
Helene MUNIER ◽  
Anne-Marie GILLES ◽  
Philippe GLASER ◽  
Evelyne KRIN ◽  
Antoine DANCHIN ◽  
...  

2015 ◽  
Vol 90 (1) ◽  
pp. 76-91 ◽  
Author(s):  
Nicole A. Doria-Rose ◽  
Jinal N. Bhiman ◽  
Ryan S. Roark ◽  
Chaim A. Schramm ◽  
Jason Gorman ◽  
...  

ABSTRACT The epitopes defined by HIV-1 broadly neutralizing antibodies (bNAbs) are valuable templates for vaccine design, and studies of the immunological development of these antibodies are providing insights for vaccination strategies. In addition, the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of 12 V1V2-directed neutralizing antibodies, CAP256-VRC26, isolated from an HIV-1 clade C-infected donor at years 1, 2, and 4 of infection (N. A. Doria-Rose et al., Nature 509:55–62, 2014, http://dx.doi.org/10.1038/nature13036 ). Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. Thirteen antibodies were isolated from B cell culture, and eight were isolated using trimeric envelope probes for differential single B cell sorting. One of the new antibodies displayed a 10-fold greater neutralization potency than previously published lineage members. This antibody, CAP256-VRC26.25, neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency. Among the viruses neutralized, the median 50% inhibitory concentration was 0.001 μg/ml. All 33 lineage members targeted a quaternary epitope focused on V2. While all known bNAbs targeting the V1V2 region interact with the N160 glycan, the CAP256-VRC26 antibodies showed an inverse correlation of neutralization potency with dependence on this glycan. Overall, our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent. IMPORTANCE Studies of HIV-1 broadly neutralizing antibodies (bNAbs) provide valuable information for vaccine design, and the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of V1V2-directed neutralizing antibodies from an HIV-1 clade C-infected donor. Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. One of the new antibodies, CAP256-VRC26.25, displayed a 10-fold greater neutralization potency than previously described lineage members. It neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency: the median 50% inhibitory concentration was 0.001 μg/ml. Our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent.


2021 ◽  
Author(s):  
Vincent Dussupt ◽  
Rajeshwer S. Sankhala ◽  
Letzibeth Mendez-Rivera ◽  
Samantha M. Townsley ◽  
Fabian Schmidt ◽  
...  

AbstractPrevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.


Sign in / Sign up

Export Citation Format

Share Document