scholarly journals Systematic analysis of REBASE identifies numerous Type I restriction-modification systems that contain duplicated, variable hsdS specificity genes that randomly switch methyltransferase specificity by recombination

2020 ◽  
Author(s):  
John M. Atack ◽  
Chengying Guo ◽  
Thomas Litfin ◽  
Long Yang ◽  
Patrick J. Blackall ◽  
...  

AbstractN6-adenine DNA methyltransferases associated with some Type I and Type III restriction-modification (R-M) systems are able to randomly switch expression by variation in the length of locus-encoded simple sequence repeats (SSRs). SSR tract-length variation causes ON/OFF switching of methyltransferase expression, resulting in genome-wide methylation differences, and global changes in gene expression. These epigenetic regulatory systems are called phasevarions, phase-variable regulons, and are widespread in bacteria. A distinct switching system has also been described in Type I R-M systems, based on recombination-driven changes in hsdS genes, which dictate the DNA target site. In order to determine the prevalence of recombination-driven phasevarions, we generated a program called RecombinationRepeatSearch to interrogate REBASE and identify the presence and number of inverted repeats of hsdS downstream of Type I R-M loci. We report that 5.9% of Type I R-M systems have duplicated variable hsdS genes containing inverted repeats capable of phase-variation. We report the presence of these systems in the major pathogens Enterococcus faecalis and Listeria monocytogenes, which will have important implications for pathogenesis and vaccine development. These data suggest that in addition to SSR-driven phasevarions, many bacteria have independently evolved phase-variable Type I R-M systems via recombination between multiple, variable hsdS genes.ImportanceMany bacterial species contain DNA methyltransferases that have random on/off switching of expression. These systems called phasevarions (phase-variable regulons) control the expression of multiple genes by global methylation changes. In every previously characterised phasevarion, genes involved in pathobiology, antibiotic resistance, and potential vaccine candidates are randomly varied in their expression, commensurate with methyltransferase switching. A systematic study to determine the extent of phasevarions controlled by invertible Type I R-M systems has never before been performed. Understanding how bacteria regulate genes is key to the study of physiology, virulence, and vaccine development; therefore it is critical to identify and characterize phase-variable methyltransferases controlling phasevarions.

mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
John M. Atack ◽  
Chengying Guo ◽  
Thomas Litfin ◽  
Long Yang ◽  
Patrick J. Blackall ◽  
...  

ABSTRACT N6-Adenine DNA methyltransferases associated with some Type I and Type III restriction-modification (R-M) systems are able to undergo phase variation, randomly switching expression ON or OFF by varying the length of locus-encoded simple sequence repeats (SSRs). This variation of methyltransferase expression results in genome-wide methylation differences and global changes in gene expression. These epigenetic regulatory systems are called phasevarions, phase-variable regulons, and are widespread in bacteria. A distinct switching system has also been described in Type I R-M systems, based on recombination-driven changes in hsdS genes, which dictate the DNA target site. In order to determine the prevalence of recombination-driven phasevarions, we generated a program called RecombinationRepeatSearch to interrogate REBASE and identify the presence and number of inverted repeats of hsdS downstream of Type I R-M loci. We report that 3.9% of Type I R-M systems have duplicated variable hsdS genes containing inverted repeats capable of phase variation. We report the presence of these systems in the major pathogens Enterococcus faecalis and Listeria monocytogenes, which could have important implications for pathogenesis and vaccine development. These data suggest that in addition to SSR-driven phasevarions, many bacteria have independently evolved phase-variable Type I R-M systems via recombination between multiple, variable hsdS genes. IMPORTANCE Many bacterial species contain DNA methyltransferases that have random on/off switching of expression. These systems, called phasevarions (phase-variable regulons), control the expression of multiple genes by global methylation changes. In every previously characterized phasevarion, genes involved in pathobiology, antibiotic resistance, and potential vaccine candidates are randomly varied in their expression, commensurate with methyltransferase switching. Our systematic study to determine the extent of phasevarions controlled by invertible Type I R-M systems will provide valuable information for understanding how bacteria regulate genes and is key to the study of physiology, virulence, and vaccine development; therefore, it is critical to identify and characterize phase-variable methyltransferases controlling phasevarions.


2020 ◽  
Vol 74 (1) ◽  
pp. 655-671
Author(s):  
Kate L. Seib ◽  
Yogitha N. Srikhanta ◽  
John M. Atack ◽  
Michael P. Jennings

Human-adapted bacterial pathogens use a mechanism called phase variation to randomly switch the expression of individual genes to generate a phenotypically diverse population to adapt to challenges within and between human hosts. There are increasing reports of restriction-modification systems that exhibit phase-variable expression. The outcome of phase variation of these systems is global changes in DNA methylation. Analysis of phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens has demonstrated that global changes in methylation regulate the expression of multiple genes. These systems are called phasevarions (phase-variable regulons). Phasevarion switching alters virulence phenotypes and facilitates evasion of host immune responses. This review describes the characteristics of phasevarions and implications for pathogenesis and immune evasion. We present and discuss examples of phasevarion systems in the major human pathogens Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Helicobacter pylori, Moraxella catarrhalis, and Streptococcus pneumoniae.


2002 ◽  
Vol 184 (23) ◽  
pp. 6615-6623 ◽  
Author(s):  
Nicolette de Vries ◽  
Dirk Duinsbergen ◽  
Ernst J. Kuipers ◽  
Raymond G. J. Pot ◽  
Patricia Wiesenekker ◽  
...  

ABSTRACT Phase variation is important in bacterial pathogenesis, since it generates antigenic variation for the evasion of immune responses and provides a strategy for quick adaptation to environmental changes. In this study, a Helicobacter pylori clone, designated MOD525, was identified that displayed phase-variable lacZ expression. The clone contained a transcriptional lacZ fusion in a putative type III DNA methyltransferase gene (mod, a homolog of the gene JHP1296 of strain J99), organized in an operon-like structure with a putative type III restriction endonuclease gene (res, a homolog of the gene JHP1297), located directly upstream of it. This putative type III restriction-modification system was common in H. pylori, as it was present in 15 out of 16 clinical isolates. Phase variation of the mod gene occurred at the transcriptional level both in clone MOD525 and in the parental H. pylori strain 1061. Further analysis showed that the res gene also displayed transcriptional phase variation and that it was cotranscribed with the mod gene. A homopolymeric cytosine tract (C tract) was present in the 5′ coding region of the res gene. Length variation of this C tract caused the res open reading frame (ORF) to shift in and out of frame, switching the res gene on and off at the translational level. Surprisingly, the presence of an intact res ORF was positively correlated with active transcription of the downstream mod gene. Moreover, the C tract was required for the occurrence of transcriptional phase variation. Our finding that translation and transcription are linked during phase variation through slipped-strand mispairing is new for H. pylori.


2006 ◽  
Vol 72 (8) ◽  
pp. 5367-5375 ◽  
Author(s):  
Miki Watanabe ◽  
Harumi Yuzawa ◽  
Naofumi Handa ◽  
Ichizo Kobayashi

ABSTRACT Genome sequence comparisons among multiple species of Pyrococcus, a hyperthermophilic archaeon, revealed a linkage between a putative restriction-modification gene complex and several large genome polymorphisms/rearrangements. From a region apparently inserted into the Pyrococcus abyssi genome, a hyperthermoresistant restriction enzyme [PabI; 5′-(GTA/C)] with a novel structure was discovered. In the present work, the neighboring methyltransferase homologue, M.PabI, was characterized. Its N-terminal half showed high similarities to the M subunit of type I systems and a modification enzyme of an atypical type II system, M.AhdI, while its C-terminal half showed high similarity to the S subunit of type I systems. M.PabI expressed within Escherichia coli protected PabI sites from RsaI, a PabI isoschizomer. M.PabI, purified following overexpression, was shown to generate 5′-GTm6AC, which provides protection against PabI digestion. M.PabI was found to be highly thermophilic; it showed methylation at 95°C and retained at least half the activity after 9 min at 95°C. This hyperthermophilicity allowed us to obtain activation energy and other thermodynamic parameters for the first time for any DNA methyltransferases. We also determined the kinetic parameters of k cat, Km , DNA, and Km , AdoMet. The activity of M.PabI was optimal at a slightly acidic pH and at an NaCl concentration of 200 to 500 mM and was inhibited by Zn2+ but not by Mg2+, Ca2+, or Mn2+. These and previous results suggest that this unique methyltransferase and PabI constitute a type II restriction-modification gene complex that inserted into the P. abyssi genome relatively recently. As the most thermophilic of all the characterized DNA methyltransferases, M.PabI may help in the analysis of DNA methylation and its application to DNA engineering.


2020 ◽  
Vol 48 (19) ◽  
pp. 11040-11053
Author(s):  
Nadav Ben-Assa ◽  
Michael J Coyne ◽  
Alexey Fomenkov ◽  
Jonathan Livny ◽  
William P Robins ◽  
...  

Abstract The genomes of gut Bacteroidales contain numerous invertible regions, many of which contain promoters that dictate phase-variable synthesis of surface molecules such as polysaccharides, fimbriae, and outer surface proteins. Here, we characterize a different type of phase-variable system of Bacteroides fragilis, a Type I restriction modification system (R-M). We show that reversible DNA inversions within this R-M locus leads to the generation of eight specificity proteins with distinct recognition sites. In vitro grown bacteria have a different proportion of specificity gene combinations at the expression locus than bacteria isolated from the mammalian gut. By creating mutants, each able to produce only one specificity protein from this region, we identified the R-M recognition sites of four of these S-proteins using SMRT sequencing. Transcriptome analysis revealed that the locked specificity mutants, whether grown in vitro or isolated from the mammalian gut, have distinct transcriptional profiles, likely creating different phenotypes, one of which was confirmed. Genomic analyses of diverse strains of Bacteroidetes from both host-associated and environmental sources reveal the ubiquity of phase-variable R-M systems in this phylum.


2017 ◽  
Vol 41 (Supp_1) ◽  
pp. S3-S15 ◽  
Author(s):  
Megan De Ste Croix ◽  
Irene Vacca ◽  
Min Jung Kwun ◽  
Joseph D. Ralph ◽  
Stephen D. Bentley ◽  
...  

2019 ◽  
Vol 201 (19) ◽  
Author(s):  
Leonardo Furi ◽  
Liam A. Crawford ◽  
Guillermo Rangel-Pineros ◽  
Ana S. Manso ◽  
Megan De Ste Croix ◽  
...  

ABSTRACTVirus-host interactions are regulated by complex coevolutionary dynamics. InStreptococcus pneumoniae, phase-variable type I restriction-modification (R-M) systems are part of the core genome. We hypothesized that the ability of the R-M systems to switch between six target DNA specificities also has a key role in preventing the spread of bacteriophages. Using the streptococcal temperate bacteriophage SpSL1, we show that the variants of both the SpnIII and SpnIV R-M systems are able to restrict invading bacteriophage with an efficiency approximately proportional to the number of target sites in the bacteriophage genome. In addition to restriction of lytic replication, SpnIII also led to abortive infection in the majority of host cells. During lytic infection, transcriptional analysis found evidence of phage-host interaction through the strong upregulation of thenrdRnucleotide biosynthesis regulon. During lysogeny, the phage had less of an effect on host gene regulation. This research demonstrates a novel combined bacteriophage restriction and abortive infection mechanism, highlighting the importance that the phase-variable type I R-M systems have in the multifunctional defense against bacteriophage infection in the respiratory pathogenS. pneumoniae.IMPORTANCEWith antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogenStreptococcus pneumoniaeand explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection.


2020 ◽  
Vol 48 (20) ◽  
pp. 11468-11485
Author(s):  
Xueting Huang ◽  
Juanjuan Wang ◽  
Jing Li ◽  
Yanni Liu ◽  
Xue Liu ◽  
...  

Abstract Type I restriction-modification (R-M) systems consist of a DNA endonuclease (HsdR, HsdM and HsdS subunits) and methyltransferase (HsdM and HsdS subunits). The hsdS sequences flanked by inverted repeats (referred to as epigenetic invertons) in certain Type I R-M systems undergo invertase-catalyzed inversions. Previous studies in Streptococcus pneumoniae have shown that hsdS inversions within clonal populations produce subpopulations with profound differences in the methylome, cellular physiology and virulence. In this study, we bioinformatically identified six major clades of the tyrosine and serine family invertases homologs from 16 bacterial phyla, which potentially catalyze hsdS inversions in the epigenetic invertons. In particular, the epigenetic invertons are highly enriched in host-associated bacteria. We further verified hsdS inversions in the Type I R-M systems of four representative host-associated bacteria and found that each of the resultant hsdS allelic variants specifies methylation of a unique DNA sequence. In addition, transcriptome analysis revealed that hsdS allelic variations in Enterococcus faecalis exert significant impact on gene expression. These findings indicate that epigenetic switches driven by invertases in the epigenetic invertons broadly operate in the host-associated bacteria, which may broadly contribute to bacterial host adaptation and virulence beyond the role of the Type I R-M systems against phage infection.


2021 ◽  
Vol 22 (14) ◽  
pp. 7521
Author(s):  
Marko Nedeljković ◽  
Diego Emiliano Sastre ◽  
Eric John Sundberg

The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host.


Sign in / Sign up

Export Citation Format

Share Document