scholarly journals SARS-CoV-2-specific antibody detection for sero-epidemiology: a multiplex analysis approach accounting for accurate seroprevalence

Author(s):  
Gerco den Hartog ◽  
Rutger M. Schepp ◽  
Marjan Kuijer ◽  
Corine GeurtsvanKessel ◽  
Josine van Beek ◽  
...  

ABSTRACTBackgroundThe COVID-19 pandemic demands detailed understanding of the kinetics of antibody production induced by infection with SARS-CoV-2. We aimed to develop a high throughput multiplex assay to detect antibodies to SARS-CoV-2 to assess immunity to the virus in the general population.MethodsSpike protein subunits S1 and RBD, and Nucleoprotein were coupled to distinct microspheres. Sera collected before the emergence of SARS-CoV-2 (N=224), and of non-SARS-CoV-2 influenza-like illness (N=184), and laboratory-confirmed cases of SARS-CoV-2 infection (N=115) with various severity of COVID-19 were tested for SARS-CoV-2-specific concentrations of IgG.ResultsOur assay discriminated SARS-CoV-2-induced antibodies and those induced by other viruses. The assay obtained a specificity between 95.1 and 99.0% with a sensitivity ranging from 83.6-95.7%. By merging the test results for all 3 antigens a specificity of 100% was achieved with a sensitivity of at least 90%. Hospitalized COVID-19 patients developed higher IgG concentrations and the rate of IgG production increased faster compared to non-hospitalized cases.ConclusionsThe bead-based serological assay for quantitation of SARS-CoV-2-specific antibodies proved to be robust and can be conducted in many laboratories. Finally, we demonstrated that testing of antibodies against different antigens increases sensitivity and specificity compared to single antigen-specific IgG determination.

2020 ◽  
Vol 222 (9) ◽  
pp. 1452-1461 ◽  
Author(s):  
Gerco den Hartog ◽  
Rutger M Schepp ◽  
Marjan Kuijer ◽  
Corine GeurtsvanKessel ◽  
Josine van Beek ◽  
...  

Abstract Background The COVID-19 pandemic necessitates better understanding of the kinetics of antibody production induced by infection with SARS-CoV-2. We aimed to develop a high-throughput multiplex assay to detect antibodies to SARS-CoV-2 to assess immunity to the virus in the general population. Methods Spike protein subunits S1 and receptor binding domain, and nucleoprotein were coupled to microspheres. Sera collected before emergence of SARS-CoV-2 (n = 224) and of non-SARS-CoV-2 influenza-like illness (n = 184), and laboratory-confirmed cases of SARS-CoV-2 infection (n = 115) with various severities of COVID-19 were tested for SARS-CoV-2–specific IgG concentrations. Results Our assay discriminated SARS-CoV-2–induced antibodies and those induced by other viruses. The assay specificity was 95.1%–99.0% with sensitivity 83.6%–95.7%. By merging the test results for all 3 antigens a specificity of 100% was achieved with a sensitivity of at least 90%. Hospitalized COVID-19 patients developed higher IgG concentrations and the rate of IgG production increased faster compared to nonhospitalized cases. Conclusions The bead-based serological assay for quantitation of SARS-CoV-2–specific antibodies proved to be robust and can be conducted in many laboratories. We demonstrated that testing of antibodies against multiple antigens increases sensitivity and specificity compared to single-antigen–specific IgG determination.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1480
Author(s):  
Fabio Fiorino ◽  
Anna Sicuranza ◽  
Annalisa Ciabattini ◽  
Adele Santoni ◽  
Gabiria Pastore ◽  
...  

Immunization with mRNA SARS-CoV-2 vaccines has been highly recommended and prioritized in fragile subjects, including patients with myelofibrosis (MF). Available data on the vaccine immune response developed by MF patients and the impact of ruxolitinib treatment are still too fragmented to support an informed decision on a third dose for this category of subjects. Here, we show that 76% of MF patients develop spike-specific IgG after the second mRNA SARS-CoV-2 vaccine dose, but the response has a slower kinetics compared to healthy subjects, suggesting a reduced capability of their immune system to promptly react to vaccination. A reduced ACE2/RBD binding inhibition activity of spike-specific antibodies was also observed, especially in ruxolitinib-treated patients. Our results, showing slow kinetics of antibody responses in MF patients following vaccination with mRNA SARS-CoV-2 vaccines, support the need for a third vaccine dose.


Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1031
Author(s):  
Olivera Lijeskić ◽  
Ivana Klun ◽  
Marija Stamenov Djaković ◽  
Nenad Gligorić ◽  
Tijana Štajner ◽  
...  

Real-life data on the performance of vaccines against SARS-CoV-2 are still limited. We here present the rates of detection and levels of antibodies specific for the SARS-CoV-2 spike protein RBD (receptor binding domain) elicited by four vaccines available in Serbia, including BNT-162b2 (BioNTech/Pfizer), BBIBP-CorV (Sinopharm), Gam-COVID-Vac (Gamaleya Research Institute) and ChAdOx1-S (AstraZeneca), compared with those after documented COVID-19, at 6 weeks and 3 months post first vaccine dose or post-infection. Six weeks post first vaccine dose, specific IgG antibodies were detected in 100% of individuals fully vaccinated with BNT-162b2 (n = 100) and Gam-COVID-Vac (n = 12) and in 81.7% of BBIBP-CorV recipients (n = 148), while one dose of ChAdOx1-S (n = 24) induced specific antibodies in 75%. Antibody levels elicited by BNT-162b2 were higher, while those elicited by BBIBP-CorV were lower, than after SARS-CoV-2 infection. By 3 months post-vaccination, antibody levels decreased but remained ≥20-fold above the cut-off in BNT-162b2 but not in BBIBP-CorV recipients, when an additional 30% were seronegative. For all vaccines, antibody levels were higher in individuals with past COVID-19 than in naïve individuals. A total of twelve new infections occurred within the first 3 months post-vaccination, eight after the first dose of BNT-162b2 and ChAdOx1-S (one each) and BBIBP-CorV (six), and four after full vaccination with BBIBP-CorV, but none required hospitalization.


2020 ◽  
Author(s):  
Brett Ragnesola ◽  
Daniel Jin ◽  
Chris C. Lamb ◽  
Beth H. Shaz ◽  
Christopher D. Hillyer ◽  
...  

Abstract Objective: COVID19 has caused a global and ongoing pandemic. The need for population seroconversion data is apparent to monitor and respond to the pandemic. Using a lateral flow assay (LFA) testing platform, the seropositivity in 63 New York Blood Center (NYBC)Convelescent Plasma (CP) donor samples were evaluated for the presence of COVID19 specific IgG and IgM.Results: CP donors showed diverse antibody result.Convalescent donor plasma contains SARS-CoV-2 specific antibodies. Weak antibody bands may identify low titer CP donors.LFA tests can identify antibody positive individuals that have recovered from COVID19. Confirming suspected cases using antibody detection could help inform the patient and the community as to the relative risk to future exposure and a better understanding of disease exposure.


2021 ◽  
Vol 491 ◽  
pp. 112971
Author(s):  
Kristin Launhardt ◽  
Virginie Lefevre ◽  
Vianney Souplet ◽  
Livia Prantl ◽  
Matthias Marget ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mikail Dogan ◽  
Lina Kozhaya ◽  
Lindsey Placek ◽  
Courtney Gunter ◽  
Mesut Yigit ◽  
...  

AbstractDevelopment of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.


2021 ◽  
Vol 11 (14) ◽  
pp. 6430
Author(s):  
Mepur H. Ravindranath ◽  
Narendranath M. Ravindranath ◽  
Carly J. Amato-Menker

The number and the binding affinity, measured as the mean fluorescent intensity (MFI) of HLA-specific IgG antibodies, formed in the sera of end-stage organ disease patients and allograft recipients, referred to as sensitization, may restrict the availability of a donor organ and/or lead to graft failure after transplantation. The MFI of HLA Abs in sera is monitored with the Luminex-based single-antigen bead (SAB) immunoassay. The following two factors may impact the reliable measurement of MFI: one, the HLA structural variants on the SAB, namely, trimeric HLA (closed conformers, CC) and monomeric heavy chains (open conformers, OC); and two, the nature of the detection Abs, namely, IgG heavy-chain binding polyclonal-Fab (IgHPolyFab) or Fc-binding monoclonal-IgG (FcMonoIgG). Anti-CC Abs correlate with positive flow cross-matches, and are considered to be pathogenic and damaging to the graft, whereas anti-OC Abs appear to have little relevance to graft attrition. The presence of both CC and OC on beads may impair the reliability of monitoring the nature and MFI of pathogenic Abs. Our objective is to compare the MFI of the HLA Abs in the sera of 20 sensitized patients in two different SAB assays, with the two detection Abs. Our data reveal that the admixture of OC with CC on beads will affect the reliability of the measurement of the pathogenic Abs, and that FcMonoIgG is the more sensitive and specific detection Ab for the accurate assessment of HLA sensitization.


2003 ◽  
Vol 64 (10) ◽  
pp. S14
Author(s):  
Thomas M. Ellis ◽  
Howard M. Gebel ◽  
Karen L. Pierce ◽  
Robert A. Bray

1973 ◽  
Vol 28 (1-2) ◽  
pp. 83-90
Author(s):  
Horst Mossmann ◽  
Dietrich K. Hammer

The reaction of bacteriophage T4 with 1-fluoro-2,4-dinitrobenzene resulted in a covalent binding of 2,4-dinitrophenyl (DNP) determinants to the phage. From the kinetics of inactivation reflecting the coupling process it is concluded that attachment of more than one DNP group to the critical site(s) of the phage is required for inactivation (multi-hit reaction). Contrary to this the neutralization of DNP-T4 by anti-DNP antibody turned out to be a first order reaction, until 80 %> neutralization fitting one-hit kinetics. If compared with native T4, the susceptibility of DNP-T4 to neutralization by anti-T4 antibody is considerably higher, indicating that attachment of DNP groups to T4 amplifies the sensitivity to neutralization by anti-T4. Comparing neutralization kinetics of DNP-T4 and native T4 by anti-DNP-T4 antibody it is suggested that native determinants and DNP groups, as well as determinants resulting from alteration due to the coupling process, all together may contribute as targets for neutralization. Three characteristics strengthen the view that the velocity of T4 conjugates in infecting the host strain is markedly decreased if compared with that of native T4: (a) considerable discrepancy between direct plating and decision technique (b) increasing variety of plaque size and (c) decreased velocity of the first step of reproduction. The kinetics of neutralization observed can be reconciled with a model proposed by Krummel and Uhr. The kinetics of reactivation of neutralized DNP-T4 by the presence cf DNP-BSA has been investigated and the problems involved in the reaction are discussed.


Sign in / Sign up

Export Citation Format

Share Document