scholarly journals Nanoparticle Tracking Analysis: A powerful tool for characterizing magnetosome preparations

2020 ◽  
Author(s):  
Alfred Fernández-Castané ◽  
Hong Li ◽  
Stephan Joseph ◽  
Moritz Ebeler ◽  
Matthias Franzreb ◽  
...  

AbstractNanoparticle Tracking Analysis (NTA) has been employed to measure the particle concentration and size distribution of magnetosomes extracted and purified from Magnetospirillum gryphiswaldense MSR-1, and then exposed to probe ultrasonication for various times, or 1% (w/v) sodium dodecyl sulphate (SDS) for 1 h. Particle concentration increased 3.7-fold over the first 15 min of ultrasonication (from 2 × 108 to >7.3 × 108 particles mL−1), but fell steeply to ~3.6 × 108 particles mL−1 after 20 min. NTA of untreated magnetosome preparation confirmed a wide particle distribution dominated by larger species (D[1,0] = 312 nm; Dn50 = 261 nm; mode = 243 nm) with no particles in the size range of isolated single magnetosomes. After 5 min of ultrasonication the whole particle size distribution shifted to smaller size (D[1,0] = 133 nm; Dn50 = 99 nm; mode = 36 nm, corresponding to individual magnetosomes), but longer treatment times (15 and 20 min) reversed the previous transition; all characteristic numbers of the particle size distributions increased and very few small particles were detected. Side-by-side comparison of NTA and TEM sizing data revealed remarkable similarity at low ultrasonication times, with both showing single magnetosomes accounted for ~30% population after 5 min. Exposure of magnetosomes to SDS resulted in a ~3-fold increase in particle concentration to 5.8 × 108 particles mL−1, narrowing of the size distribution and gross elimination of particles below 60 nm. We conclude that NTA is a rapid cost-effective technique for measuring particle number, size distribution and aggregation state of magnetosomes in solution, but requires further work to improve its resolving power.

2007 ◽  
Vol 128 ◽  
pp. 97-100 ◽  
Author(s):  
Stephanie Möller ◽  
Janusz D. Fidelus ◽  
Witold Łojkowski

The aim of the work was to examine the influence of pH, high power ultrasound, surfactant and dopant quantity on the particle size distribution of ZrO2:Pr3+, with praseodymium content varying between 0.05 and 10 %. The nanopowders were obtained via a hydrothermal microwave driven process. To establish if the dopant was located on the surface of the zirconia nanoparticles, the particle size distribution, as a function of pH, was measured to obtain an estimate of the isoelectric point of the samples. All results indicated that the dopant was concentrated on the surface: the measurements of the particle size distribution show that the pH corresponding to maximum average particle size changes towards higher values when the Pr content increases. Measurements of the particle size distribution dependency on the application of high power ultrasound and the addition of the sodium dodecyl sulphate surfactant show that, under certain conditions, there is a better stabilisation of the nanopowders in a dispersion and undesirable agglomeration is hindered.


2018 ◽  
Vol 33 (9) ◽  
pp. 1500-1505 ◽  
Author(s):  
D. Foppiano ◽  
M. Tarik ◽  
E. Gubler Müller ◽  
C. Ludwig

Elemental detection with high resolving power in the total particle size distribution.


Author(s):  
A.B.M. Nazmul Islam

Chitosan-silver nanoparticles are prepared in nonaqueous medium. In this work, sodium dodecyl sulfate (SDS) was introduced into the dimethylformamide (DMF) solution during silver reduction from solution of its precursor salt AgNO3, acting as a stabilizing agent to prevent aggregation of silver nanoparticles, while chitosan is used as the solid support to embedded silver particles therein, resulting in chitosan-silver (CS-Ag) nanoparticle as suspension in the medium. The reaction started as homogeneous system which turned into heterogeneous with the formation of particles. The properties of CS-Ag nanoparticles are studied under two different salt concentrations and characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-Vis). Wide particle size distribution of synthesized nanoparticles depicts that concentration of AgNO3, which is responsible for the morphology, stability and particle size distribution, should be optimized, suggesting a lower salt concentration is favorable.


2021 ◽  
Vol 12 (2) ◽  
pp. 104-111
Author(s):  
O. G. Sirenko ◽  
◽  
O. M. Lisova ◽  
S. M. Makhno ◽  
G. M. Gunya ◽  
...  

Polymeric construction materials based on epoxy resin, carbon fillers, such as graphene nanoplates (GNP), carbon nanotubes (CNT) and fillers of inorganic nature – perlite, vermiculite, sand with improved electrophysical characteristics have been developed. The electrophysical propertieгs of composites obtained in various ways which differ according to the principle of injecting components have been investigated. GNP were obtained in two ways. Size distribution of GNP obtained by electrochemical method is 50 to 150 nm. The average particle size is up to 100 nm. It occurs that these particles tend to aggregate as it is shown by the method of dynamic light scattering. The GNP obtained by dispersing thermally expanded graphite in water in a rotary homogenizer have a particle size distribution of 400 to 800 nm if very small particles and large aggregates are absent. The second method of obtaining GNP is less energy consuming and requires fewer manufacturing cycles, so it is more cost-effective. Obtaining composites using aqueous suspensions of GNP is environmentally friendly. Due to the hydrophobic properties of its surface the electrical conductivity of the system which uses vermiculite is higher than one of that which uses perlite for composites with CNT and GNP. It has been found that the difference of electrophysical characteristics between two systems which contain the same amount of carbon filler is caused by the nature of the surface of dielectric components – sand. By changing the content of dielectric ingredients can expand the functionality of composites if use them for shielding from electromagnetic fields.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6611
Author(s):  
Zohair Usfoor ◽  
Katharina Kaufmann ◽  
Al Shahriar Hossain Rakib ◽  
Roland Hergenröder ◽  
Victoria Shpacovitch

Nanoparticle Tracking Analysis (NTA) allows for the simultaneous determination of both size and concentration of nanoparticles in a sample. This study investigates the accuracy of particle size and concentration measurements performed on an LM10 device. For experiments, standard nanoparticles of different sizes composed of two materials with different refractive indices were used. Particle size measurements were found to have a decent degree of accuracy. This fact was verified by the manufacturer-reported particle size—determined by transmission electron microscopy (TEM)—as well as by performed scanning electron microscopy (SEM) measurements. On the other hand, concentration measurements resulted in overestimation of the particle concentration in majority of cases. Thus, our findings confirmed the accuracy of nanoparticle sizing performed by the LM10 instrument and highlighted the overestimation of particle concentration made by this device. In addition, an approach of swift correction of the results of concentration measurements received for samples is suggested in the presented study.


2015 ◽  
Vol 22 (5) ◽  
pp. 633-643 ◽  
Author(s):  
P. R. Renosh ◽  
F. G. Schmitt ◽  
H. Loisel

Abstract. Marine coastal processes are highly variable over different space scales and timescales. In this paper we analyse the intermittency properties of particle size distribution (PSD) recorded every second using a LISST instrument (Laser In-Situ Scattering and Transmissometry). The particle concentrations have been recorded over 32 size classes from 2.5 to 500 μm, at 1 Hz resolution. Such information is used to estimate at each time step the hyperbolic slope of the particle size distribution, and to consider its dynamics. Shannon entropy, as an indicator of the randomness, is estimated at each time step and its dynamics is analysed. Furthermore, particles are separated into four classes according to their size, and the intermittent properties of these classes are considered. The empirical mode decomposition (EMD) is used, associated with arbitrary-order Hilbert spectral analysis (AHSA), in order to retrieve scaling multifractal moment functions, for scales from 10 s to 8 min. The intermittent properties of two other indicators of particle concentration are also considered in the same range of scales: the total volume concentration Cvol-total and the particulate beam attenuation coefficient cp(670). Both show quite similar intermittent dynamics and are characterised by the same exponents. Globally we find here negative Hurst exponents (meaning the small scales show larger fluctuation than large scales) for each time series considered, and nonlinear moment functions.


2001 ◽  
Vol 44 (10) ◽  
pp. 185-189 ◽  
Author(s):  
K.-J. Hwang

The effect of particle size distribution on the performance of batchwise centrifugal filtration is studied. By analyzing the velocity of particles in a filter, a numerical program is designed for simulating the migration and deposition of particles. The particle size distributions and the average specific filtration resistances of cake are then estimated under various rotating speeds of the centrifuge. A large deviation of particle concentration profiles in the filter chamber will occur if the particle size distribution is not taken into consideration. A more heterogeneous cake will form under a lower rotating speed due to the sedimentation effect of particles. The predicted results of particle size distribution and average specific filtration resistance of cake agree well with the available experimental data.


Sign in / Sign up

Export Citation Format

Share Document