scholarly journals Checkpoint-blocker induced autoimmunity is associated with pretreatment T cell expression profiles and favourable outcome in melanoma

Author(s):  
W. Ye ◽  
A Olsson-Brown ◽  
R. A. Watson ◽  
V. T. F. Cheung ◽  
R. D. Morgan ◽  
...  

1Abstract1.1BackgroundImmune checkpoint blockers (ICBs) activate CD8+ T cells to elicit anti-cancer activity but frequently lead to immune-related adverse events (irAEs). The relationship of irAE with baseline parameters and clinical outcome is unclear. We investigated associations between irAE development, CD8+ T cell receptor diversity and expression and clinical outcome in a non-trial setting.1.2MethodsPatients ≥18 years old with metastatic melanoma (MM) receiving combination ICB (ipilimumab plus nivolumab – cICB, n=60) or single-agent ICB (nivolumab/pembrolizumab – sICB, n=78) were prospectively recruited. We retrospectively evaluated the impact of irAEs on survival. This analysis was repeated in an independent cohort of MM patients treated at a separate institution (n=210, cICB:74, sICB:136). We performed RNA sequencing of CD8+ T cells isolated from patients prior to treatment, analysing T cell receptor clonality differential transcript expression according to irAE development.1.3Results48.6% of patients experienced treatment-related irAEs within the first 5 cycles of treatment. Development of irAE prior to the 5th cycle of ICB was associated with longer progression-free and overall survival (PFS, OS) in the primary cohort (log-rank test, PFS: P=0.00034; OS: P<0.0001), replicated in the secondary cohort (OS: P=0.00064). Across cohorts median survival for those patients not experiencing irAE was 14.4 (95% CI:9.6-19.5) months vs not-reached (95% CI:28.9 - Inf), P=3.0×10−7. Pre-treatment performance status and neutrophil count, but not BMI, were additional predictors of clinical outcome. Analysis of CD8+ T cells from 128 patients demonstrated irAE development was associated with increased T cell receptor diversity post-treatment (P=4.3×10−5). Development of irAE in sICB recipients was additionally associated with baseline differential expression of 224 transcripts (FDR<0.1), enriched in pro-inflammatory pathway genes including CYP4F3 and PTGS2.1.4ConclusionsEarly irAE development post-ICB is strongly associated with favourable survival in MM and increased diversity of peripheral CD8+ T cell receptors after treatment. irAE post-sICB is associated with pre-treatment upregulation of inflammatory pathways, indicating irAE development may reflect baseline immune activation states.Key messageImmune-related adverse events (irAEs) commonly occur in patients with metastatic melanoma treated with immune checkpoint blockade (ICB) therapy. In real world setting we find development of early irAEs post-ICB treatment is associated with survival benefit, indicative of a shared mechanism with anti-tumour efficacy. CD8+ T cells from patients who develop irAE show increased receptor diversity, and pre-treatment samples from patients who develop irAE post single-agent anti-PD1 show over-expression of inflammatory pathways, indicating baseline immune state can determine irAE development.

Author(s):  
Weiyu Ye ◽  
Anna Olsson-Brown ◽  
Robert A. Watson ◽  
Vincent T. F. Cheung ◽  
Robert D. Morgan ◽  
...  

Abstract Background Immune checkpoint blockers (ICBs) activate CD8+ T cells, eliciting both anti-cancer activity and immune-related adverse events (irAEs). The relationship of irAEs with baseline parameters and clinical outcome is unclear. Methods Retrospective evaluation of irAEs on survival was performed across primary (N = 144) and secondary (N = 211) independent cohorts of patients with metastatic melanoma receiving single agent (pembrolizumab/nivolumab—sICB) or combination (nivolumab and ipilimumab—cICB) checkpoint blockade. RNA from pre-treatment and post-treatment CD8+ T cells was sequenced and differential gene expression according to irAE development assessed. Results 58.3% of patients developed early irAEs and this was associated with longer progression-free (PFS) and overall survival (OS) across both cohorts (log-rank test, OS: P < 0.0001). Median survival for patients without irAEs was 16.6 months (95% CI: 10.9–33.4) versus not-reached (P = 2.8 × 10−6). Pre-treatment monocyte and neutrophil counts, but not BMI, were additional predictors of clinical outcome. Differential expression of numerous gene pathway members was observed in CD8+ T cells according to irAE development, and patients not developing irAEs demonstrating upregulated CXCR1 pre- and post-treatment. Conclusions Early irAE development post-ICB is associated with favourable survival in MM. Development of irAEs is coupled to expression of numerous gene pathways, suggesting irAE development in-part reflects baseline immune activation.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 54-54
Author(s):  
Ralph E. Parchment ◽  
Tony Navas ◽  
Kristin Fino ◽  
Andy Fung ◽  
Facundo Cutuli ◽  
...  

54 Background: Direct cytolysis of tumor cells by CD8+ T cells results from the net effect of at least two biochemical pathways: (1) stimulatory signaling from the activated T cell receptor (TCR) complex in response to its recognition of a tumor neoantigen presented in the context of autologous MHC class I, and (2) suppressive signaling from immune checkpoints, such as the response of PD1 to binding its ligand, PDL1. Because the PD1:PDL1 immune checkpoint is significant for therapy only when there is tumor cell-specific TCR activation and signaling, it is not surprising that simple measurements of either PD1 or PDL1 in tumor biopsies are, at best, imperfect predictive biomarkers. Instead, a more precise test that quantifies PD1 signaling due to PDL1 binding only in the subset of CD8+ T cells exhibiting activated TCR signaling should provide a more accurate assessment of the extent of immune checkpoint suppression of tumor immunity and therefore be a more predictive biomarker of response to PD1/PDL1-targeted immunotherapy. Methods: We have developed a multiplexed immunofluorescence microscopy test capable of simultaneous quantitation of TCR activation (phospho-CD3zeta), immune checkpoint signaling via PD1 (phospho-SHP1 and -SHP2), and the net stimulation or inhibition resulting from the integration of these two pathways (phospho-ZAP70). Results: Specific antibodies to these biomarkers have been qualified, including peptide inhibition studies to establish antibody specificity, and their performance established by fit-for-purpose studies of in vitro models of CD8+ T cell activation. This multiplex biomarker panel is suitable for clinical use with formalin-fixed, paraffin embedded core needle biopsies of tumor and quantitative immunofluorescence microscopy (qIFA). Conclusions: The additional biomarkers of tumor immunity are expected to add an important context for interpreting PD1/PDL1 measurements. Funded by NCI Contract No. HHSN261200800001E.


2021 ◽  
Vol 9 (11) ◽  
pp. e003679
Author(s):  
Kirit Singh ◽  
Kelly M Hotchkiss ◽  
Aditya A Mohan ◽  
Jessica L Reedy ◽  
John H Sampson ◽  
...  

Glioblastoma is the the most common primary brain tumor in adults. Onset of disease is followed by a uniformly lethal prognosis and dismal overall survival. While immunotherapies have revolutionized treatment in other difficult-to-treat cancers, these have failed to demonstrate significant clinical benefit in patients with glioblastoma. Obstacles to success include the heterogeneous tumor microenvironment (TME), the immune-privileged intracranial space, the blood–brain barrier (BBB) and local and systemic immunosuppressions. Monoclonal antibody-based therapies have failed at least in part due to their inability to access the intracranial compartment. Bispecific T-cell engagers are promising antibody fragment-based therapies which can bring T cells close to their target and capture them with a high binding affinity. They can redirect the entire repertoire of T cells against tumor, independent of T-cell receptor specificity. However, the multiple challenges posed by the TME, immune privilege and the BBB suggest that a single agent approach may be insufficient to yield durable, long-lasting antitumor efficacy. In this review, we discuss the mechanism of action of T-cell engagers, their preclinical and clinical developments to date. We also draw comparisons with other classes of multispecific antibodies and potential combinations using these antibody fragment therapies.


2019 ◽  
Vol 30 ◽  
pp. v481-v482
Author(s):  
M.W. Rohaan ◽  
R. Gomez-Eerland ◽  
M H Geukes Foppen ◽  
M. van Zon ◽  
R. de Boer ◽  
...  

2021 ◽  
Author(s):  
Christopher A Alvarez-Breckenridge ◽  
Samuel C Markson ◽  
Jackson H Stocking ◽  
Naema Nayyar ◽  
Matthew Lastrapes ◽  
...  

Melanoma-derived brain metastases (MBM) represent an unmet clinical need due to central nervous system (CNS) progression as a frequent, end-stage site of disease. Immune checkpoint inhibition (ICI) represents a clinical opportunity against MBM; however, the MBM tumor microenvironment (TME) has not been fully elucidated in the context of ICI. To dissect unique MBM-TME elements and correlates of MBM-ICI response, we collected 32 fresh MBM and performed single cell RNA sequencing of the MBM-TME and T cell receptor clonotyping on T cells from MBM and matched blood and extracranial lesions. We observed myeloid phenotypic heterogeneity, most notably multiple distinct neutrophil states including an IL-8 expressing population that correlated with malignant cell epithelial-to-mesenchymal transition. Additionally, we observe significant relationships between intracranial T cell phenotypes and the distribution of T cell clonotypes intracranially and peripherally. We found that the phenotype, clonotype, and overall number of MBM-infiltrating T cells were associated with response to ICI, suggesting that ICI-responsive MBMs interact with peripheral blood in a manner similar to extracranial lesions. These data demonstrate unique features of the MBM-TME, which may represent potential targets to improve clinical outcomes for patients with MBM.


2018 ◽  
Vol 1 (1) ◽  
pp. 28-32
Author(s):  
Piyawat Komolmit

การรักษามะเร็งด้วยแนวความคิดของการกระตุ้นให้ภูมิต้านทานของร่างกายไปทำลายเซลล์มะเร็งนั้น ปัจจุบันได้รับการพิสูจน์ชัดว่าวิธีการนี้สามารถหยุดยั้งการแพร่กระจายของเซลล์มะเร็ง โดยไม่ก่อให้เกิดภาวะแทรกซ้อนทางปฏิกิริยาภูมิต้านทานต่ออวัยวะส่วนอื่นที่รุนแรง สามารถนำมาใช้ทางคลินิกได้ ยุคของการรักษามะเร็งกำลังเปลี่ยนจากยุคของยาเคมีบำบัดเข้าสู่การรักษาด้วยภูมิต้านทาน หรือ immunotherapy ยากลุ่ม Immune checkpoint inhibitors โดยเฉพาะ PD-1 กับ CTLA-4 inhibitors จะเข้ามามีบทบาทในการรักษามะเร็งตับในระยะเวลาอันใกล้ จำเป็นแพทย์จะต้องมีความรู้ความเข้าใจในพื้นฐานของ immune checkpoints และยาที่ไปยับยั้งโมเลกุลเหล่านี้ Figure 1 เมื่อ T cells รับรู้แอนทิเจนผ่านทาง TCR/MHC จะมีปฏิกิริยาระหว่าง co-receptors หรือ immune checkpoints กับ ligands บน APCs หรือ เซลล์มะเร็ง ทั้งแบบกระตุ้น (co-stimulation) หรือยับยั้ง (co-inhibition) TCR = T cell receptor, MHC = major histocompatibility complex


Sign in / Sign up

Export Citation Format

Share Document