scholarly journals Microenvironmental correlates of immune checkpoint inhibitor response in human melanoma brain metastases revealed by T cell receptor and single-cell RNA sequencing

2021 ◽  
Author(s):  
Christopher A Alvarez-Breckenridge ◽  
Samuel C Markson ◽  
Jackson H Stocking ◽  
Naema Nayyar ◽  
Matthew Lastrapes ◽  
...  

Melanoma-derived brain metastases (MBM) represent an unmet clinical need due to central nervous system (CNS) progression as a frequent, end-stage site of disease. Immune checkpoint inhibition (ICI) represents a clinical opportunity against MBM; however, the MBM tumor microenvironment (TME) has not been fully elucidated in the context of ICI. To dissect unique MBM-TME elements and correlates of MBM-ICI response, we collected 32 fresh MBM and performed single cell RNA sequencing of the MBM-TME and T cell receptor clonotyping on T cells from MBM and matched blood and extracranial lesions. We observed myeloid phenotypic heterogeneity, most notably multiple distinct neutrophil states including an IL-8 expressing population that correlated with malignant cell epithelial-to-mesenchymal transition. Additionally, we observe significant relationships between intracranial T cell phenotypes and the distribution of T cell clonotypes intracranially and peripherally. We found that the phenotype, clonotype, and overall number of MBM-infiltrating T cells were associated with response to ICI, suggesting that ICI-responsive MBMs interact with peripheral blood in a manner similar to extracranial lesions. These data demonstrate unique features of the MBM-TME, which may represent potential targets to improve clinical outcomes for patients with MBM.

2021 ◽  
Vol 12 ◽  
Author(s):  
Katharina Rindler ◽  
Wolfgang M. Bauer ◽  
Constanze Jonak ◽  
Matthias Wielscher ◽  
Lisa E. Shaw ◽  
...  

Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma. While initially restricted to the skin, malignant cells can appear in blood, bone marrow and secondary lymphoid organs in later disease stages. However, only little is known about phenotypic and functional properties of malignant T cells in relationship to tissue environments over the course of disease progression. We thus profiled the tumor micromilieu in skin, blood and lymph node in a patient with advanced MF using single-cell RNA sequencing combined with V-D-J T-cell receptor sequencing. In skin, we identified clonally expanded T-cells with characteristic features of tissue-resident memory T-cells (TRM, CD69+CD27-NR4A1+RGS1+AHR+). In blood and lymph node, the malignant clones displayed a transcriptional program reminiscent of a more central memory-like phenotype (KLF2+TCF7+S1PR1+SELL+CCR7+), while retaining tissue-homing receptors (CLA, CCR10). The skin tumor microenvironment contained potentially tumor-permissive myeloid cells producing regulatory (IDO1) and Th2-associated mediators (CCL13, CCL17, CCL22). Given their expression of PVR, TNFRSF14 and CD80/CD86, they might be under direct control by TIGIT+CTLA4+CSF2+TNFSF14+ tumor cells. In sum, this study highlights the adaptive phenotypic and functional plasticity of MF tumor cell clones. Thus, the TRM-like phenotype enables long-term skin residence of MF cells. Their switch to a TCM-like phenotype with persistent skin homing molecule expression in the circulation might explain the multi-focal nature of MF.


2020 ◽  
Author(s):  
Kristen E. Pauken ◽  
Osmaan Shahid ◽  
Kaitlyn A. Lagattuta ◽  
Kelly M. Mahuron ◽  
Jacob M. Luber ◽  
...  

AbstractThe ability to monitor anti-tumor CD8+ T cell responses in the blood has tremendous therapeutic potential. Here, we used paired single-cell RNA sequencing and T cell receptor (TCR) sequencing to detect and characterize “tumor matching” (TM) CD8+ T cells in the blood of mice with MC38 tumors and melanoma patients using the TCR as a molecular barcode. TM cells showed increased activation compared to non-matching T cells in blood, and appeared less exhausted than matching counterparts in tumor. Importantly, PD-1, which has been used to identify putative circulating anti-tumor CD8+ T cells, showed poor sensitivity for identifying TM cells. By leveraging the transcriptome we identified candidate cell surface marker panels for TM cells in mice and melanoma patients, and validated NKG2D, CD39, and CX3CR1 in mice. These data demonstrate that the TCR can be used to identify tumor-relevant populations for comprehensive characterization, reveal unique transcriptional properties of TM cells, and develop marker panels for tracking and analysis of these cells.SummaryUsing single-cell RNA-sequencing coupled with TCR sequencing, we detected CD8+ T cell clones shared between blood and tumor in mice and melanoma patients, characterized these matching clones in blood and tumor, and identified potential biomarkers for their isolation in blood.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A204-A204
Author(s):  
Jack Reid ◽  
Shihong Zhang ◽  
Ariunaa Munkhbat ◽  
Matyas Ecsedi ◽  
Megan McAfee ◽  
...  

BackgroundT Cell Receptor (TCR)-T cell therapies have shown some promising results in cancer clinical trials, however the efficacy of treatment remains suboptimal. Outcomes could potentially be improved by utilizing highly functional TCRs for future trials. Current TCR discovery methods are relatively low throughput and rely on synthesis and screening of individual TCRs based on tetramer binding and peptide specificity, which is costly and labor intensive. We have developed and validated a pooled approach relying on directly cloned TCRs transduced into a fluorescent Jurkat reporter system (figure 1). This approach provides an unbiased, high-throughput method for TCR discovery.MethodsAs a model for POTS, T cells specific for a peptide derived adenovirus structural protein were sorted on tetramer and subjected to 10x single cell VDJ analysis. Pools of randomly paired TCR alpha and beta chains were cloned from the 10x cDNA into a lentiviral vector and transduced into a Jurkat reporter cells. Consecutive stimulations with cognate antigen followed by cell sorts were performed to enrich for functional TCRs. Full length TCRab pools were sequenced by Oxford Nanopore Technologies (ONT) and compared to a 10x dataset to find naturally paired TCRs.ResultsComparison between the ex vivo single cell VDJ sequencing and ONT sequencing of the transduced antigen specific TCRs showed more than 99% of the TCR pairs found in reporter positive Jurkat cells were naturally paired TCRs. The functionality of 8 TCR clonotypes discovered using POTS were compared and clone #2 showed the strongest response. Of the selected clonotypes, clone #2 showed a low frequency of 0.9% in the ex vivo single cell VDJ sequencing. After the first round of stimulation and sequencing, clone #2 takes up of 5% of all reporter-positive clones. The abundance of clone #2 further increased to 17% after another round of stimulation, sorting and sequencing, suggesting this method can retrieve and enrich for highly functional antigen specific TCRs.Abstract 192 Figure 1Outline of the POTS workflow.ConclusionsPOTS provides a high-throughput method for discovery of naturally paired, high-avidity T cell receptors. This method mitigates bias introduced by T cell differentiation state by screening TCRs in a clonal reporter system. Additionally, POTS allows for screening of low abundance clones when compared with traditional TCR discovery techniques. Pooled TCRs could also be screened in vivo with primary T cells in a mouse model to screen for the most functional and physiologically fit TCR for cancer treatment.


2020 ◽  
Author(s):  
W. Ye ◽  
A Olsson-Brown ◽  
R. A. Watson ◽  
V. T. F. Cheung ◽  
R. D. Morgan ◽  
...  

1Abstract1.1BackgroundImmune checkpoint blockers (ICBs) activate CD8+ T cells to elicit anti-cancer activity but frequently lead to immune-related adverse events (irAEs). The relationship of irAE with baseline parameters and clinical outcome is unclear. We investigated associations between irAE development, CD8+ T cell receptor diversity and expression and clinical outcome in a non-trial setting.1.2MethodsPatients ≥18 years old with metastatic melanoma (MM) receiving combination ICB (ipilimumab plus nivolumab – cICB, n=60) or single-agent ICB (nivolumab/pembrolizumab – sICB, n=78) were prospectively recruited. We retrospectively evaluated the impact of irAEs on survival. This analysis was repeated in an independent cohort of MM patients treated at a separate institution (n=210, cICB:74, sICB:136). We performed RNA sequencing of CD8+ T cells isolated from patients prior to treatment, analysing T cell receptor clonality differential transcript expression according to irAE development.1.3Results48.6% of patients experienced treatment-related irAEs within the first 5 cycles of treatment. Development of irAE prior to the 5th cycle of ICB was associated with longer progression-free and overall survival (PFS, OS) in the primary cohort (log-rank test, PFS: P=0.00034; OS: P<0.0001), replicated in the secondary cohort (OS: P=0.00064). Across cohorts median survival for those patients not experiencing irAE was 14.4 (95% CI:9.6-19.5) months vs not-reached (95% CI:28.9 - Inf), P=3.0×10−7. Pre-treatment performance status and neutrophil count, but not BMI, were additional predictors of clinical outcome. Analysis of CD8+ T cells from 128 patients demonstrated irAE development was associated with increased T cell receptor diversity post-treatment (P=4.3×10−5). Development of irAE in sICB recipients was additionally associated with baseline differential expression of 224 transcripts (FDR<0.1), enriched in pro-inflammatory pathway genes including CYP4F3 and PTGS2.1.4ConclusionsEarly irAE development post-ICB is strongly associated with favourable survival in MM and increased diversity of peripheral CD8+ T cell receptors after treatment. irAE post-sICB is associated with pre-treatment upregulation of inflammatory pathways, indicating irAE development may reflect baseline immune activation states.Key messageImmune-related adverse events (irAEs) commonly occur in patients with metastatic melanoma treated with immune checkpoint blockade (ICB) therapy. In real world setting we find development of early irAEs post-ICB treatment is associated with survival benefit, indicative of a shared mechanism with anti-tumour efficacy. CD8+ T cells from patients who develop irAE show increased receptor diversity, and pre-treatment samples from patients who develop irAE post single-agent anti-PD1 show over-expression of inflammatory pathways, indicating baseline immune state can determine irAE development.


Author(s):  
Holger Winkels ◽  
Dennis Wolf

The infiltration and accumulation of pro- and anti-inflammatory leukocytes within the intimal layer of the arterial wall is a hallmark of developing and progressing atherosclerosis. While traditionally perceived as macrophage- and foam cell-dominated disease, it is now established that atherosclerosis is a partial autoimmune disease that involves the recognition of peptides from ApoB (apolipoprotein B), the core protein of LDL (low-density lipoprotein) cholesterol particles, by CD4 + T-helper cells and autoantibodies against LDL and ApoB. Autoimmunity in the atherosclerotic plaque has long been understood as a pathogenic T-helper type-1 driven response with proinflammatory cytokine secretion. Recent developments in high-parametric cell immunophenotyping by mass cytometry, single-cell RNA-sequencing, and in tools exploring antigen-specificity have established the existence of several unforeseen layers of T cell diversity with mixed T H 1 and T regulatory cells transcriptional programs and unpredicted fates. These findings suggest that pathogenic ApoB-reactive T cells evolve from atheroprotective and immunosuppressive CD4 + T regulatory cells that lose their protective properties over time. Here, we discuss T cell heterogeneity in atherosclerosis with a focus on plasticity, antigen-specificity, exhaustion, maturation, tissue residency, and its potential use in clinical prediction.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i39-i39
Author(s):  
Aaron Mochizuki ◽  
Sneha Ramakrishna ◽  
Zina Good ◽  
Shabnum Patel ◽  
Harshini Chinnasamy ◽  
...  

Abstract Introduction We are conducting a Phase I clinical trial utilizing chimeric antigen receptor (CAR) T-cells targeting GD2 (NCT04196413) for H3K27M-mutant diffuse intrinsic pontine glioma (DIPG) and spinal cord diffuse midline glioma (DMG). Cerebrospinal fluid (CSF) is collected for correlative studies at the time of routine intracranial pressure monitoring via Ommaya catheter. Here we present single cell RNA-sequencing results from the first 3 subjects. Methods Single cell RNA-sequencing was performed utilizing 10X Genomics on cells isolated from CSF at various time points before and after CAR T-cell administration and on the CAR T-cell product. Output was aligned with Cell Ranger and analyzed in R. Results As detailed in the Majzner et al. abstract presented at this meeting, three of four subjects treated at dose-level one exhibited clear radiographic and/or clinical benefit. We have to date completed single cell RNA-sequencing for three of these four subjects (two with benefit, one without). After filtering out low-quality signals and doublets, 89,604 cells across 3 subjects were analyzed. Of these, 4,122 cells represent cells isolated from CSF and 85,482 cells represent CAR T-cell product. Two subjects who demonstrated clear clinical and radiographic improvement exhibited fewer S100A8+S100A9+ myeloid suppressor-cells and CD25+FOXP3+ regulatory T-cells in the CSF pre-infusion compared to the subject who did not derive a therapeutic response. In one subject with DIPG who demonstrated improvement, polyclonal CAR T-cells detectable in CSF at Day +14 demonstrated enrichment of CD8A, GZMA, GNLY and PDCD1 compared to the pre-infusion CAR T-cells by trajectory analysis, suggesting differentiation toward a cytotoxic phenotype; the same subject exhibited increasing numbers of S100A8+S100A9+ myeloid cells and CX3CR1+P2RY12+ microglia over time. Further analyses will be presented as data become available. Conclusions The presence of immunosuppressive myeloid populations, detectable in CSF, may correlate to clinical response in CAR T cell therapy for DIPG/DMG.


2021 ◽  
Author(s):  
Xuefei Wang ◽  
Xiangru Shen ◽  
Shan Chen ◽  
Hongyi Liu ◽  
Ni Hong ◽  
...  

AbstractClassic T cell subsets are defined by a small set of cell surface markers, while single cell RNA sequencing (scRNA-seq) clusters cells using genome-wide gene expression profiles. The relationship between scRNA-seq Clustered-Populations (scCPops) and cell surface marker-defined classic T cell subsets remain unclear. Here, we interrogated 6 bead-enriched T cell subsets with 62,235 single cell transcriptomes and re-grouped them into 9 scCPops. Bead-enriched CD4 Naïve and CD8 Naïve were mainly clustered into their scCPop counterparts, while cells from the other T cell subsets were assigned to multiple scCPops including mucosal-associated invariant T cells and natural killer T cells. The multiple T cell subsets that form a single scCPop exhibited similar expression pattern, but not vice versa, indicating scCPops are much homogeneous cell populations with similar cell states. Interestingly, we discovered and named IFNhi T, a new T cell subpopulation that highly expressed Interferon Signaling Associated Genes (ISAGs). We further enriched IFNhi T by FACS sorting of BST2 for scRNA-seq analyses. IFNhi T cluster disappeared on tSNE plot after removing ISAGs, while IFNhi T cluster showed up by tSNE analyses of ISAGs alone, indicating ISAGs are the major contributor of IFNhi T cluster. BST2+ T cells and BST2− T cells showing different efficiencies of T cell activation indicates high level of ISAGs may contribute to quick immune responses.


2016 ◽  
Author(s):  
Shaked Afik ◽  
Kathleen B. Yates ◽  
Kevin Bi ◽  
Samuel Darko ◽  
Jernej Godec ◽  
...  

ABSTRACTThe T cell compartment must contain diversity in both TCR repertoire and cell state to provide effective immunity against pathogens1,2. However, it remains unclear how differences in the TCR contribute to heterogeneity in T cell state at the single cell level because most analysis of the TCR repertoire has, to date, aggregated information from populations of cells. Single cell RNA-sequencing (scRNA-seq) can allow simultaneous measurement of TCR sequence and global transcriptional profile from single cells. However, current protocols to directly sequence the TCR require the use of long sequencing reads, increasing the cost and decreasing the number of cells that can be feasibly analyzed. Here we present a tool that can efficiently extract TCR sequence information from standard, short-read scRNA-seq libraries of T cells: TCR Reconstruction Algorithm for Paired-End Single cell (TRAPeS). We apply it to investigate heterogeneity in the CD8+T cell response in humans and mice, and show that it is accurate and more sensitive than previous approaches3,4. We applied TRAPeS to single cell RNA-seq of CD8+T cells specific for a single epitope from Yellow Fever Virus5. We show that the recently-described "naive-like" memory population of YFV-specific CD8+T cells have significantly longer CDR3 regions and greater divergence from germline sequence than do effector-memory phenotype CD8+T cells specific for YFV. This suggests that TCR usage contributes to heterogeneity in the differentiation state of the CD8+T cell response to YFV. TRAPeS is publicly available, and can be readily used to investigate the relationship between the TCR repertoire and cellular phenotype.


Sign in / Sign up

Export Citation Format

Share Document