scholarly journals Quantitative comparison of principal component analysis and unsupervised deep learning using variational autoencoders for shape analysis of motile cells

2020 ◽  
Author(s):  
Caleb K. Chan ◽  
Amalia Hadjitheodorou ◽  
Tony Y.-C. Tsai ◽  
Julie A. Theriot

ABSTRACTCell motility is a crucial biological function for many cell types, including the immune cells in our body that act as first responders to foreign agents. In this work we consider the amoeboid motility of human neutrophils, which show complex and continuous morphological changes during locomotion. We imaged live neutrophils migrating on a 2D plane and extracted unbiased shape representations using cell contours and binary masks. We were able to decompose these complex shapes into low-dimensional encodings with both principal component analysis (PCA) and an unsupervised deep learning technique using variational autoencoders (VAE), enhanced with generative adversarial networks (GANs). We found that the neural network architecture, the VAE-GAN, was able to encode complex cell shapes into a low-dimensional latent space that encodes the same shape variation information as PCA, but much more efficiently. Contrary to the conventional viewpoint that the latent space is a “black box”, we demonstrated that the information learned and encoded within the latent space is consistent with PCA and is reproducible across independent training runs. Furthermore, by including cell speed into the training of the VAE-GAN, we were able to incorporate cell shape and speed into the same latent space. Our work provides a quantitative framework that connects biological form, through cell shape, to a biological function, cell movement. We believe that our quantitative approach to calculating a compact representation of cell shape using the VAE-GAN provides an important avenue that will support further mechanistic dissection of cell motility.AUTHOR SUMMARYDeep convolutional neural networks have recently enjoyed a surge in popularity, and have found useful applications in many fields, including biology. Supervised deep learning, which involves the training of neural networks using existing labeled data, has been especially popular in solving image classification problems. However, biological data is often highly complex and continuous in nature, where prior labeling is impractical, if not impossible. Unsupervised deep learning promises to discover trends in the data by reducing its complexity while retaining the most relevant information. At present, challenges in the extraction of meaningful human-interpretable information from the neural network’s nonlinear discovery process have earned it a reputation of being a “black box” that can perform impressively well at prediction but cannot be used to shed any meaningful insight on underlying mechanisms of variation in biological data sets. Our goal in this paper is to establish unsupervised deep learning as a practical tool to gain scientific insight into biological data by first establishing the interpretability of our particular data set (images of the shapes of motile neutrophils) using more traditional techniques. Using the insight gained from this as a guide allows us to shine light into the “black box” of unsupervised deep learning.

2021 ◽  
Vol 15 (8) ◽  
pp. 898-911
Author(s):  
Yongqing Zhang ◽  
Jianrong Yan ◽  
Siyu Chen ◽  
Meiqin Gong ◽  
Dongrui Gao ◽  
...  

Rapid advances in biological research over recent years have significantly enriched biological and medical data resources. Deep learning-based techniques have been successfully utilized to process data in this field, and they have exhibited state-of-the-art performances even on high-dimensional, nonstructural, and black-box biological data. The aim of the current study is to provide an overview of the deep learning-based techniques used in biology and medicine and their state-of-the-art applications. In particular, we introduce the fundamentals of deep learning and then review the success of applying such methods to bioinformatics, biomedical imaging, biomedicine, and drug discovery. We also discuss the challenges and limitations of this field, and outline possible directions for further research.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1498
Author(s):  
Karel J. in’t Hout ◽  
Jacob Snoeijer

We study the principal component analysis based approach introduced by Reisinger and Wittum (2007) and the comonotonic approach considered by Hanbali and Linders (2019) for the approximation of American basket option values via multidimensional partial differential complementarity problems (PDCPs). Both approximation approaches require the solution of just a limited number of low-dimensional PDCPs. It is demonstrated by ample numerical experiments that they define approximations that lie close to each other. Next, an efficient discretisation of the pertinent PDCPs is presented that leads to a favourable convergence behaviour.


2018 ◽  
Vol 37 (10) ◽  
pp. 1233-1252 ◽  
Author(s):  
Jonathan Hoff ◽  
Alireza Ramezani ◽  
Soon-Jo Chung ◽  
Seth Hutchinson

In this article, we present methods to optimize the design and flight characteristics of a biologically inspired bat-like robot. In previous, work we have designed the topological structure for the wing kinematics of this robot; here we present methods to optimize the geometry of this structure, and to compute actuator trajectories such that its wingbeat pattern closely matches biological counterparts. Our approach is motivated by recent studies on biological bat flight that have shown that the salient aspects of wing motion can be accurately represented in a low-dimensional space. Although bats have over 40 degrees of freedom (DoFs), our robot possesses several biologically meaningful morphing specializations. We use principal component analysis (PCA) to characterize the two most dominant modes of biological bat flight kinematics, and we optimize our robot’s parametric kinematics to mimic these. The method yields a robot that is reduced from five degrees of actuation (DoAs) to just three, and that actively folds its wings within a wingbeat period. As a result of mimicking synergies, the robot produces an average net lift improvesment of 89% over the same robot when its wings cannot fold.


2019 ◽  
Vol 20 (S18) ◽  
Author(s):  
Zhenxing Wang ◽  
Yadong Wang

Abstract Background Lung cancer is one of the most malignant tumors, causing over 1,000,000 deaths each year worldwide. Deep learning has brought success in many domains in recent years. DNA methylation, an epigenetic factor, is used for model training in many studies. There is an opportunity for deep learning methods to analyze the lung cancer epigenetic data to determine their subtypes for appropriate treatment. Results Here, we employ variational autoencoders (VAEs), an unsupervised deep learning framework, on 450K DNA methylation data of TCGA-LUAD and TCGA-LUSC to learn latent representations of the DNA methylation landscape. We extract a biologically relevant latent space of LUAD and LUSC samples. It is showed that the bivariate classifiers on the further compressed latent features could classify the subtypes accurately. Through clustering of methylation-based latent space features, we demonstrate that the VAEs can capture differential methylation patterns about subtypes of lung cancer. Conclusions VAEs can distinguish the original subtypes from manually mixed methylation data frame with the encoded features of latent space. Further applications about VAEs should focus on fine-grained subtypes identification for precision medicine.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2229 ◽  
Author(s):  
Mansoor Khan ◽  
Tianqi Liu ◽  
Farhan Ullah

Wind power forecasting plays a vital role in renewable energy production. Accurately forecasting wind energy is a significant challenge due to the uncertain and complex behavior of wind signals. For this purpose, accurate prediction methods are required. This paper presents a new hybrid approach of principal component analysis (PCA) and deep learning to uncover the hidden patterns from wind data and to forecast accurate wind power. PCA is applied to wind data to extract the hidden features from wind data and to identify meaningful information. It is also used to remove high correlation among the values. Further, an optimized deep learning algorithm with a TensorFlow framework is used to accurately forecast wind power from significant features. Finally, the deep learning algorithm is fine-tuned with learning error rate, optimizer function, dropout layer, activation and loss function. The algorithm uses a neural network and intelligent algorithm to predict the wind signals. The proposed idea is applied to three different datasets (hourly, monthly, yearly) gathered from the National Renewable Energy Laboratory (NREL) transforming energy database. The forecasting results show that the proposed research can accurately predict wind power using a span ranging from hours to years. A comparison is made with popular state of the art algorithms and it is demonstrated that the proposed research yields better predictions results.


2011 ◽  
Vol 341-342 ◽  
pp. 790-797 ◽  
Author(s):  
Zhi Yan Xiang ◽  
Tie Yong Cao ◽  
Peng Zhang ◽  
Tao Zhu ◽  
Jing Feng Pan

In this paper, an object tracking approach is introduced for color video sequences. The approach presents the integration of color distributions and probabilistic principal component analysis (PPCA) into particle filtering framework. Color distributions are robust to partial occlusion, are rotation and scale invariant and are calculated efficiently. Principal Component Analysis (PCA) is used to update the eigenbasis and the mean, which can reflect the appearance changes of the tracked object. And a low dimensional subspace representation of PPCA efficiently adapts to these changes of appearance of the target object. At the same time, a forgetting factor is incorporated into the updating process, which can be used to economize on processing time and enhance the efficiency of object tracking. Computer simulation experiments demonstrate the effectiveness and the robustness of the proposed tracking algorithm when the target object undergoes pose and scale changes, defilade and complex background.


2014 ◽  
Vol 571-572 ◽  
pp. 753-756
Author(s):  
Wei Li Li ◽  
Xiao Qing Yin ◽  
Bin Wang ◽  
Mao Jun Zhang ◽  
Ke Tan

Denoising is an important issue for laser active image. This paper attempted to process laser active image in the low-dimensional sub-space. We adopted the principal component analysis with local pixel grouping (LPG-PCA) denoising method proposed by Zhang [1], and compared it with the conventional denoising method for laser active image, such as wavelet filtering, wavelet soft threshold filtering and median filtering. Experimental results show that the image denoised by LPG-PCA has higher BIQI value than other images, most of the speckle noise can be reduced and the detail structure information is well preserved. The low-dimensional sub-space idea is a new direction for laser active image denoising.


Author(s):  
Stephanie Hare ◽  
Lars Bratholm ◽  
David Glowacki ◽  
Barry Carpenter

Low dimensional representations along reaction pathways were produced using newly created Python software that utilises Principal Component Analysis (PCA) to do dimensionality reduction. Plots of these pathways in reduced dimensional space, as well as the physical meaning of the reduced dimensional axes, are discussed.


Sign in / Sign up

Export Citation Format

Share Document