scholarly journals Toxoplasma gondii PPM3C, a secreted protein phosphatase, affects parasitophorous vacuole effector export

2020 ◽  
Author(s):  
Joshua A. Mayoral ◽  
Tadakimi Tomita ◽  
Vincent Tu ◽  
Jennifer T. Aguilan ◽  
Simone Sidoli ◽  
...  

ABSTRACTToxoplasma gondii is a highly successful parasite that infects a significant portion of the human population. As an intracellular parasite, T. gondii thrives within many different cell types due to its residence in the parasitophorous vacuole, a specialized and heavily modified compartment in which parasites divide. Within this vacuole, numerous secreted proteins facilitate functions that optimize intracellular survival. We characterized one such protein, TgPPM3C, which is predicted to contain a domain belonging to the PP2C class of serine/threonine phosphatases and is secreted by both tachyzoites and differentiating bradyzoites into the vacuolar lumen. Genetic deletion of TgPPM3C established that parasites lacking this predicted phosphatase exhibit a minor growth defect in vitro, are avirulent during acute infection in mice, and form fewer cysts in mouse brain during chronic infection. A label-free phosphoproteomic approach was utilized to identify putative TgPPM3C substrates and demonstrated several secreted proteins with altered phosphorylation status in the absence of TgPPM3C. Altered phosphorylation status was seen in MYR1, a protein essential to the process of protein effector export from the parasitophorous vacuole into the host cell, and in GRA16 and GRA28, two exported effector proteins. Defects were seen in the export of GRA16 and GRA28, but not the effector TgIST, in the TgPPM3C knockout strain. Parasites lacking TgPPM3C also exhibited defects in host c-Myc induction, a process influenced by effector export. Phosphomimetic mutations of GRA16 serine residues recapitulated export defects, implicating de-phosphorylation as an important process in facilitating the export of GRA16. These findings provide an example of the emerging critical role that phosphatases play in regulating the complex environment of the T. gondii parasitophorous vacuole.

2020 ◽  
Vol 16 (12) ◽  
pp. e1008771
Author(s):  
Joshua Mayoral ◽  
Tadakimi Tomita ◽  
Vincent Tu ◽  
Jennifer T. Aguilan ◽  
Simone Sidoli ◽  
...  

The intracellular parasite Toxoplasma gondii infects a large proportion of humans worldwide and can cause adverse complications in the settings of immune-compromise and pregnancy. T. gondii thrives within many different cell types due in part to its residence within a specialized and heavily modified compartment in which the parasite divides, termed the parasitophorous vacuole. Within this vacuole, numerous proteins optimize intracellular survival following their secretion by the parasite. We investigated the contribution of one of these proteins, TgPPM3C, predicted to contain a PP2C-class serine/threonine phosphatase domain and previously shown to interact with the protein MYR1, an essential component of a putative vacuolar translocon that mediates effector export into the host cell. Parasites lacking the TgPPM3C gene exhibit a minor growth defect in vitro, are avirulent during acute infection in mice, and form fewer cysts in mouse brain during chronic infection. Phosphoproteomic assessment of TgPPM3C deleted parasite cultures demonstrated alterations in the phosphorylation status of many secreted vacuolar proteins including two exported effector proteins, GRA16 and GRA28, as well as MYR1. Parasites lacking TgPPM3C are defective in GRA16 and GRA28 export, but not in the export of other MYR1-dependant effectors. Phosphomimetic mutation of two GRA16 serine residues results in export defects, suggesting that de-phosphorylation is a critical step in the process of GRA16 export. These findings provide another example of the emerging role of phosphatases in regulating the complex environment of the T. gondii parasitophorous vacuole and influencing the export of specific effector proteins from the vacuolar lumen into the host cell.


2021 ◽  
Author(s):  
Dana Aghabi ◽  
Megan Sloan ◽  
Zhicheng Dou ◽  
Alfredo J. Guerra ◽  
Clare R. Harding

AbstractIron is essential to living cells, acting as a cofactor in a number of essential enzymes in metabolism; however, iron requires proper storage or it can be dangerous to the cell. In both yeast and plants, iron is stored in a vacuole through the action of a vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii, a pathogen of medical and veterinary importance. Here, we assess the role of VIT in T. gondii. We show that deletion of VIT causes a slight growth defect in vitro, however leads to hypersensitivity in the presence of excess iron, confirming its essential role in iron detoxification in the parasite. In the absence of VIT, parasites contain less iron and are at a growth disadvantage when moving into an iron-depleted environment. We show parasite VIT expression is regulated by environmental iron levels at both the transcript and protein level, and by altering the distribution of VIT within the cell. In the absence of VIT, we find that the T. gondii responds by altering expression of genes with a role in iron metabolism and by increasing the activity of the antioxidant protein catalase. We also show that iron detoxification has an important role both in parasite survival within macrophages and in pathogenesis in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.


2022 ◽  
Author(s):  
Dana Aghabi ◽  
Megan Sloan ◽  
Zhicheng Dou ◽  
Olga Antipova ◽  
Alfredo Guerra ◽  
...  

Abstract Iron is essential to living cells, acting as a cofactor in a number of important enzymes in metabolism; however in the absence of correct storage iron forms dangerous oxygen radicals. In both yeast and plants, iron is stored in a membrane-bound vacuole through the action of a vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii, a pathogen of medical and veterinary importance. Here, we assess the role of VIT, and iron storage, in T. gondii. We show that iron is restricted to a compartment in the parasite that does not overlap with zinc. By deleting VIT we find a slight growth defect in vitro, however the absence of VIT leads to hypersensitivity to iron, confirming its essential role in iron detoxification in the parasite. This hypersensitivity can be rescued by scavenging of oxygen radicals. In the absence of VIT, parasites store less iron and are at a growth disadvantage when moving into an iron-depleted environment. We show parasite VIT expression is regulated by iron levels at both the transcript and protein level, and by altering the distribution of VIT within the cell. In the absence of VIT, we find that T. gondii responds by altering expression of genes with a role in iron metabolism and by increasing the activity of the antioxidant protein catalase. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Rashmita Pradhan ◽  
Phuong A. Ngo ◽  
Luz d. C. Martínez-Sánchez ◽  
Markus F. Neurath ◽  
Rocío López-Posadas

Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.


Author(s):  
Jie-Xi Li ◽  
Jun-Jun He ◽  
Hany M. Elsheikha ◽  
Jun Ma ◽  
Xiao-Pei Xu ◽  
...  

Toxoplasma gondii secretes a number of virulence-related effector proteins, such as the rhoptry protein 18 (ROP18). To further broaden our understanding of the molecular functions of ROP18, we examined the transcriptional response of human embryonic kidney cells (HEK293T) to ROP18 of type I T. gondii RH strain. Using RNA-sequencing, we compared the transcriptome of ROP18-expressing HEK293T cells to control HEK293T cells. Our analysis revealed that ROP18 altered the expression of 750 genes (467 upregulated genes and 283 downregulated genes) in HEK293T cells. Gene ontology (GO) and pathway enrichment analyses showed that differentially expressed genes (DEGs) were significantly enriched in extracellular matrix– and immune–related GO terms and pathways. KEGG pathway enrichment analysis revealed that DEGs were involved in several disease-related pathways, such as nervous system diseases and eye disease. ROP18 significantly increased the alternative splicing pattern “retained intron” and altered the expression of 144 transcription factors (TFs). These results provide new insight into how ROP18 may influence biological processes in the host cells via altering the expression of genes, TFs, and pathways. More in vitro and in vivo studies are required to substantiate these findings.


2002 ◽  
Vol 68 (11) ◽  
pp. 5718-5727 ◽  
Author(s):  
Li-Wei Lee ◽  
Ching-Hsun Chiou ◽  
John E. Linz

ABSTRACT The activities of two enzymes, a 168-kDa protein and a 40-kDa protein, OmtA, purified from the filamentous fungus Aspergillus parasiticus were reported to convert the aflatoxin pathway intermediate sterigmatocystin to O-methylsterigmatocystin in vitro. Our initial goal was to determine if OmtA is necessary and sufficient to catalyze this reaction in vivo and if this reaction is necessary for aflatoxin synthesis. We generated A. parasiticus omtA-null mutant LW1432 and a maltose binding protein-OmtA fusion protein expressed in Escherichia coli. Enzyme activity analysis of OmtA fusion protein in vitro confirmed the reported catalytic function of OmtA. Feeding studies conducted with LW1432 demonstrated a critical role for OmtA, and the reaction catalyzed by this enzyme in aflatoxin synthesis in vivo. Because of a close regulatory link between aflatoxin synthesis and asexual sporulation (conidiation), we hypothesized a spatial and temporal association between OmtA expression and conidiospore development. We developed a novel time-dependent colony fractionation protocol to analyze the accumulation and distribution of OmtA in fungal colonies grown on a solid medium that supports both toxin synthesis and conidiation. OmtA-specific polyclonal antibodies were purified by affinity chromatography using an LW1432 protein extract. OmtA was not detected in 24-h-old colonies but was detected in 48-h-old colonies using Western blot analysis; the protein accumulated in all fractions of a 72-h-old colony, including cells (0 to 24 h) in which little conidiophore development was observed. OmtA in older fractions of the colony (24 to 72 h) was partly degraded. Fluorescence-based immunohistochemical analysis conducted on thin sections of paraffin-embedded fungal cells from time-fractionated fungal colonies demonstrated that OmtA is evenly distributed among different cell types and is not concentrated in conidiophores. These data suggest that OmtA is present in newly formed fungal tissue and then is proteolytically cleaved as cells in that section of the colony age.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Alicja M. Cygan ◽  
Terence C. Theisen ◽  
Alma G. Mendoza ◽  
Nicole D. Marino ◽  
Michael W. Panas ◽  
...  

ABSTRACT Toxoplasma gondii is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the Toxoplasma effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in Toxoplasma and indicate that the process is highly complex and dependent on at least eight discrete proteins. IMPORTANCE Toxoplasma is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell, Toxoplasma establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in Toxoplasma-infected cells and provide additional potential drug targets.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Jixu Li ◽  
Huanping Guo ◽  
Eloiza May Galon ◽  
Yang Gao ◽  
Seung-Hun Lee ◽  
...  

ABSTRACT Toxoplasma gondii is an obligate intracellular protozoan parasite and a successful parasitic pathogen in diverse organisms and host cell types. Hydroxylamine (HYD) and carboxymethoxylamine (CAR) have been reported as inhibitors of aspartate aminotransferases (AATs) and interfere with the proliferation in Plasmodium falciparum. Therefore, AATs are suggested as drug targets against Plasmodium. The T. gondii genome encodes only one predicted AAT in both T. gondii type I strain RH and type II strain PLK. However, the effects of HYD and CAR, as well as their relationship with AAT, on T. gondii remain unclear. In this study, we found that HYD and CAR impaired the lytic cycle of T. gondii in vitro, including the inhibition of invasion or reinvasion, intracellular replication, and egress. Importantly, HYD and CAR could control acute toxoplasmosis in vivo. Further studies showed that HYD and CAR could inhibit the transamination activity of rTgAAT in vitro. However, our results confirmed that deficiency of AAT in both RH and PLK did not reduce the virulence in mice, although the growth ability of the parasites was affected in vitro. HYD and CAR could still inhibit the growth of AAT-deficient parasites. These findings indicated that HYD and CAR inhibition of T. gondii growth and control of toxoplasmosis can occur in an AAT-independent pathway. Overall, further studies focusing on the elucidation of the mechanism of inhibition are warranted. Our study hints at new substrates of HYD and CAR as potential drug targets to inhibit T. gondii growth.


Microbiology ◽  
2006 ◽  
Vol 152 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Ciara M. Shaver ◽  
Alan R. Hauser

The effector proteins of the type III secretion systems of many bacterial pathogens act in a coordinated manner to subvert host cells and facilitate the development and progression of disease. It is unclear whether interactions between the type-III-secreted proteins of Pseudomonas aeruginosa result in similar effects on the disease process. We have previously characterized the contributions to pathogenesis of the type-III-secreted proteins ExoS, ExoT and ExoU when secreted individually. In this study, we extend our prior work to determine whether these proteins have greater than expected effects on virulence when secreted in combination. In vitro cytotoxicity and anti-internalization activities were not enhanced when effector proteins were secreted in combinations rather than alone. Likewise in a mouse model of pneumonia, bacterial burden in the lungs, dissemination and mortality attributable to ExoS, ExoT and ExoU were not synergistically increased when combinations of these effector proteins were secreted. Because of the absence of an appreciable synergistic increase in virulence when multiple effector proteins were secreted in combination, we conclude that any cooperation between ExoS, ExoT and ExoU does not translate into a synergistically significant enhancement of disease severity as measured by these assays.


2011 ◽  
Vol 11 ◽  
pp. 981-991 ◽  
Author(s):  
Karsten Grote ◽  
Harald Schütt ◽  
Bernhard Schieffer

Toll-like receptors (TLRs) are known as pattern-recognition receptors related to the Toll protein ofDrosophila. After recognition of pathogen-associated molecular patterns of microbial origin, the TLRs alert the immune system, and initiate innate and adaptive immune responses. The TLR system, though, is not confined solely to the leukocyte-mediated immune defense against exogenous pathogens. Besides myeloid cells, TLR expression has been reported in multiple tissues and cell types, including epithelial and endothelial cells. Moreover, despite the microbial patterns that are commonly accepted as TLR ligands, there is increasing evidence that TLRs also recognize host-derived molecules. In this regard, recent studies point to an involvement of TLRs in various chronic inflammatory disorders and cardiovascular diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, and even cancer. A common feature of these disorders is an enhanced so-called inflammation-induced angiogenesis. However, inflammation-induced angiogenesis is not solely a key component of pathogen defense during acute infection or chronic inflammatory disorders, but also plays a critical role in repair mechanisms, e.g., wound healing and subsequent tissue regeneration. Interestingly, the latest research could coincidentally demonstrate that TLR activation promotes angiogenesis in various inflammatory settings in response to both exogenous and endogenous ligands, although the precise mode of action of TLRs in this context still remains ambiguous. The objective of this review is to present evidence for the implication of TLRs in angiogenesis during physiological and pathophysiological processes, and the potential clinical relevance for new treatment regimes involving TLR modulation.


Sign in / Sign up

Export Citation Format

Share Document