scholarly journals Modeling the role of clusters and diffusion in the evolution of COVID-19 infections during lock-down

Author(s):  
W. J. T. Bos ◽  
J.-P. Bertoglio ◽  
L. Gostiaux

Epidemics such as the spreading of the SARS-CoV-2 virus are highly non linear, and therefore difficult to predict. In the present pandemic as time evolves, it appears more and more clearly that a clustered dynamics is a key element of description. This means that the disease rapidly evolves within spatially localized networks, that diffuse and eventually create new clusters. We improve upon the simplest possible compartmental model, the SIR model, by adding an additional compartment associated with the clustered individuals. This sophistication is compatible with more advanced compartmental models and allows, at the lowest level of complexity, to leverage the well-mixedness assumption. The so-obtained SBIR model takes into account the effect of inhomogeneity on epidemic spreading, and compares satisfactorily with results on the pandemic propagation in a number of European countries, during and immediately after lock-down. Especially, the decay exponent of the number of new cases after the first peak of the epidemic is captured without the need to vary the coefficients of the model with time. We show that this decay exponent is directly determined by the diffusion of the ensemble of clustered individuals and can be related to a global reproduction number, that overrides the classical, local reproduction number.

2021 ◽  
Author(s):  
Joseph Galasso ◽  
Duy M. Cao ◽  
Robert Hochberg

During the COVID-19 pandemic, predicting case spikes at the local level is important for a precise, targeted public health response and is generally done with compartmental models. The performance of compartmental models is highly dependent on the accuracy of their assumptions about disease dynamics within a population; thus, such models are susceptible to human error, unexpected events, or unknown characteristics of a novel infectious agent like COVID-19. We present a relatively non-parametric random forest model that forecasts the number of COVID-19 cases at the U.S. county level. Its most prioritized training features are derived from easily accessible, standard epidemiological data (i.e., regional test positivity rate) and the effective reproduction number R(t) from compartmental models. A novel input training feature is case projections generated by aligning estimated effective reproduction number from a compartmental model with real time testing data until maximally correlated, helping our model fit better to the epidemic's trajectory ascertained by traditional models. Any poor reliability of R(t) due to flaws in the compartmental model are mitigated with dynamic population mobility and prevalence and mortality of non-COVID-19 diseases to gauge population disease susceptibility. The model was used to generate forecasts for 1, 2, 3, and 4 weeks into the future for each reference week within 11/01/2020 - 01/10/2021 for 3068 counties. Over this time period, it maintained a mean absolute error (MAE) of less than 300 weekly cases/100,000 and consistently outperformed or performed comparably with gold-standard compartmental models. Furthermore, it holds great potential in ensemble modeling due to its potential for a more expansive training feature set while maintaining good performance and limited resource utilization.


Author(s):  
Rinaldo M Colombo ◽  
Mauro Garavello ◽  
Francesca Marcellini ◽  
Elena Rossi

We present an epidemic model capable of describing key features of the present Covid-19 pandemic. While capturing several qualitative properties of the virus spreading, it allows to compute the basic reproduction number, the number of deaths due to the virus and various other statistics. Numerical integrations are used to illustrate the relevance of quarantine and the role of care houses.


Author(s):  
Célia Maria Rufino Franco ◽  
Renato Ferreira Dutra

This work aims to apply the SIR-type compartmental model (Susceptible - Infected - Removed) in the evolution of Covid-19 in Paraíba's State and Campina Grande City. For that, the parameters of the model were considered to be variable during time evolution, within an appropriate range. The system of differential equations was solved numerically using the Euler method. The parameters were obtained by adjusting the model to the infected data provided by the Paraíba Health Department. According to the results obtained, the model describes the infected population well. There was a reduction in the effective reproduction number in Paraíba and the town of Campina Grande. It is noteworthy that understanding the dynamics of infection transmission and evaluating the effectiveness of control measures is crucial to assess the potential for sustained transmission to occur in new areas. The model can also be applied to describe epidemic dynamics in other regions and countries. 


2019 ◽  
Vol 29 ◽  
pp. 49-57
Author(s):  
Sergey V.  Lebedev ◽  
Galina N.  Lebedeva

In the article the authors note that since the 1970s, with the rise of the Islamic movement and the Islamic revolution in Iran, philosophers and political scientists started to talk about religious renaissance in many regions of the world. In addition, the point at issue is the growing role of religion in society, including European countries that have long ago gone through the process of secularization. The reasons for this phenomenon, regardless of its name, are diverse, but understandable: secular ideologies of the last century failed to explain the existing social problems and give them a rational alternative.


2020 ◽  
pp. 130-135
Author(s):  
D.N. Korotaev ◽  
K.N. Poleshchenko ◽  
E.N. Eremin ◽  
E.E. Tarasov

The wear resistance and wear characteristics of cluster-gradient architecture (CGA) nanostructured topocomposites are studied. The specifics of tribocontact interaction under microcutting conditions is considered. The reasons for retention of high wear resistance of this class of nanostructured topocomposites are studied. The mechanisms of energy dissipation from the tribocontact zone, due to the nanogeometry and the structural-phase structure of CGA topocomposites are analyzed. The role of triboactivated deformation and diffusion processes in providing increased wear resistance of carbide-based topocomposites is shown. They are tested under the conditions of blade processing of heat-resistant titanium alloy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ganna Rozhnova ◽  
Christiaan H. van Dorp ◽  
Patricia Bruijning-Verhagen ◽  
Martin C. J. Bootsma ◽  
Janneke H. H. M. van de Wijgert ◽  
...  

AbstractThe role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We use an age-structured transmission model fitted to age-specific seroprevalence and hospital admission data to assess the effects of school-based measures at different time points during the COVID-19 pandemic in the Netherlands. Our analyses suggest that the impact of measures reducing school-based contacts depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce the effective reproduction number (Re) with non-school-based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based measures may be considerable, particularly among older school children. As two examples, we demonstrate that keeping schools closed after the summer holidays in 2020, in the absence of other measures, would not have prevented the second pandemic wave in autumn 2020 but closing schools in November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 86-100
Author(s):  
Nita H. Shah ◽  
Ankush H. Suthar ◽  
Ekta N. Jayswal ◽  
Ankit Sikarwar

In this article, a time-dependent susceptible-infected-recovered (SIR) model is constructed to investigate the transmission rate of COVID-19 in various regions of India. The model included the fundamental parameters on which the transmission rate of the infection is dependent, like the population density, contact rate, recovery rate, and intensity of the infection in the respective region. Looking at the great diversity in different geographic locations in India, we determined to calculate the basic reproduction number for all Indian districts based on the COVID-19 data till 7 July 2020. By preparing district-wise spatial distribution maps with the help of ArcGIS 10.2, the model was employed to show the effect of complete lockdown on the transmission rate of the COVID-19 infection in Indian districts. Moreover, with the model's transformation to the fractional ordered dynamical system, we found that the nature of the proposed SIR model is different for the different order of the systems. The sensitivity analysis of the basic reproduction number is done graphically which forecasts the change in the transmission rate of COVID-19 infection with change in different parameters. In the numerical simulation section, oscillations and variations in the model compartments are shown for two different situations, with and without lockdown.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Alicja Buczek ◽  
Weronika Buczek

Increased human mobility elevates the risk of exposure of companion animals travelling with their owners or imported from other regions to tick attacks. In this study, we highlight the potential role of dogs and cats taken for tourist trips or imported animals in the spread of ticks and tick-borne pathogens. The Rhipicephalus sanguineus tick, which is a vector of numerous pathogens causing diseases in animals and humans, is imported most frequently from endemic areas to many European countries. Additionally, alien tick species with high epizootic and epidemiological importance can be imported on dogs from other continents. Companion animals play an even greater role in the spread of autochthonous tick species and transmission of tick pathogens to other animals and humans. Although the veterinary and medical effects of the parasitism of ticks carried by companion animals travelling with owners or imported animals are poorly assessed, these animals seem to play a role in the rapid spread of tick-borne diseases. Development of strategies for protection of the health of companion animals in different geographic regions should take into account the potential emergence of unknown animal tick-borne diseases that can be transmitted by imported ticks.


Sign in / Sign up

Export Citation Format

Share Document