scholarly journals The soluble glutathione transferase superfamily: Role of Mu class in Triclabendazole sulphoxide challenge in Fasciola hepatica

2020 ◽  
Author(s):  
Rebekah B. Stuart ◽  
Suzanne Zwaanswijk ◽  
Neil D. MacKintosh ◽  
Boontarikaan Witikornkul ◽  
Mark Prescott ◽  
...  

AbstractFasciola hepatica (liver fluke), a significant threat to food security, causes global economic loss for the livestock production industry and is re-emerging as a food borne disease of humans. In the absence of vaccines the commonly used method of treatment control is by anthelmintics; with only Triclabendazole (TCBZ) currently effective against all stages of F. hepatica in livestock and humans. There is widespread resistance to TCBZ and detoxification by flukes might contribute to the mechanism. However, there is limited Phase I capacity in adult parasitic helminths and the major Phase II detoxification system in adults is the soluble Glutathione transferases (GST) superfamily. Previous global proteomic studies have shown that the levels of Mu class GST from pooled F. hepatica parasites respond under TCBZ-Sulphoxide (TCBZ-SO), the likely active metabolite, challenge during in vitro culture ex-host. We have extended this finding by using a sub-proteomic lead approach to measure the change in the total soluble GST profile (GST-ome) of individual TCBZ susceptible F. hepatica on TCBZ-SO-exposure in vitro culture. TCBZ-SO exposure demonstrated a FhGST-Mu29 and FhGST-Mu26 response following affinity purification using both GSH and S-hexyl GSH affinity resins. Furthermore, a low affinity Mu class GST (FhGST-Mu5) has been identified and recombinantly expressed and represents a novel low affinity mu class GST. Low affinity GST isoforms within the GST-ome was not limited to FhGST-Mu5 with second likely low affinity sigma class GST (FhGST-S2) uncovered through genome analysis. This study represents the most complete Fasciola GST-ome generated to date and has supported the sub proteomic analysis on individual adult flukes.

2021 ◽  
Vol 120 (3) ◽  
pp. 979-991
Author(s):  
Rebekah B. Stuart ◽  
Suzanne Zwaanswijk ◽  
Neil D. MacKintosh ◽  
Boontarikaan Witikornkul ◽  
Peter M. Brophy ◽  
...  

AbstractFasciola hepatica (liver fluke), a significant threat to food security, causes global economic loss for the livestock industry and is re-emerging as a foodborne disease of humans. In the absence of vaccines, treatment control is by anthelmintics; with only triclabendazole (TCBZ) currently effective against all stages of F. hepatica in livestock and humans. There is widespread resistance to TCBZ and its detoxification by flukes might contribute to the mechanism. However, there is limited phase I capacity in adult parasitic helminths with the phase II detoxification system dominated by the soluble glutathione transferase (GST) superfamily. Previous proteomic studies have demonstrated that the levels of Mu class GST from pooled F. hepatica parasites respond under TCBZ-sulphoxide (TCBZ-SO) challenge during in vitro culture ex-host. We have extended this finding by exploiting a sub-proteomic lead strategy to measure the change in the total soluble GST profile (GST-ome) of individual TCBZ-susceptible F. hepatica on TCBZ-SO-exposure in vitro culture. TCBZ-SO exposure demonstrated differential abundance of FhGST-Mu29 and FhGST-Mu26 following affinity purification using both GSH and S-hexyl GSH affinity. Furthermore, a low or weak affinity matrix interacting Mu class GST (FhGST-Mu5) has been identified and recombinantly expressed and represents a new low-affinity Mu class GST. Low-affinity GST isoforms within the GST-ome was not restricted to FhGST-Mu5 with a second likely low-affinity sigma class GST (FhGST-S2) uncovered. This study represents the most complete Fasciola GST-ome generated to date and has supported the potential of subproteomic analyses on individual adult flukes.


2010 ◽  
Vol 431 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Natalia Fedulova ◽  
Françoise Raffalli-Mathieu ◽  
Bengt Mannervik

A primary role of GSTs (glutathione transferases) is detoxication of electrophilic compounds. In addition to this protective function, hGST (human GST) A3-3, a member of the Alpha class of soluble GSTs, has prominent steroid double-bond isomerase activity. The isomerase reaction is an obligatory step in the biosynthesis of steroid hormones, indicating a special role of hGST A3-3 in steroidogenic tissues. An analogous GST with high steroid isomerase activity has so far not been found in any other biological species. In the present study, we characterized a Sus scrofa (pig) enzyme, pGST A2-2, displaying high steroid isomerase activity. High levels of pGST A2-2 expression were found in ovary, testis and liver. In its functional properties, other than steroid isomerization, pGST A2-2 was most similar to hGST A3-3. The properties of the novel porcine enzyme lend support to the notion that particular GSTs play an important role in steroidogenesis.


Parasitology ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 589-603 ◽  
Author(s):  
J. KEISER

SUMMARYSchistosomiasis and food-borne trematodiases are chronic parasitic diseases affecting millions of people mostly in the developing world. Additional drugs should be developed as only few drugs are available for treatment and drug resistance might emerge. In vitro and in vivo whole parasite screens represent essential components of the trematodicidal drug discovery cascade. This review describes the current state-of-the-art of in vitro and in vivo screening systems of the blood fluke Schistosoma mansoni, the liver fluke Fasciola hepatica and the intestinal fluke Echinostoma caproni. Examples of in vitro and in vivo evaluation of compounds for activity are presented. To boost the discovery pipeline for these diseases there is a need to develop validated, robust high-throughput in vitro systems with simple readouts.


1998 ◽  
Vol 5 (1) ◽  
pp. 82-86 ◽  
Author(s):  
Michele R. Barber ◽  
T. J. Yang

ABSTRACT Due to its association with low-quality milk and a decrease in milk production in bovines, mastitis is a major cause of economic loss. Additionally, mastitis can be harmful to suckling newborns and can cause damage to the mammary gland. In mastitic mammary secretions there is a substantial increase in somatic cells, specifically neutrophils. In this study we examined the ability of mastitic and nonmastitic mammary secretions to cause in vitro neutrophil chemotaxis using a microchemotaxis assay. Also, the role of the inflammatory chemokine interleukin-8 (IL-8) in neutrophil recruitment during mastitis was addressed in these in vitro experiments. We found that both nonmastitic and mastitic mammary secretions were chemotactic, not chemokinetic, for neutrophils. The neutrophil chemotactic activity in mastitic, but not nonmastitic, mammary secretions was blocked by anti-IL-8 antibodies. Molecular mass separation of the active components showed that the chemotactic activity of the mastitic secretions was present in the 10-kDa-or-less fraction and was blocked by anti-IL-8 antibodies. These results indicate that IL-8 plays a major role in neutrophil recruitment during mastitis. An understanding of its role will be of help in designing strategies for immunomodulatory therapies for mastitis.


1995 ◽  
Vol 307 (2) ◽  
pp. 425-431 ◽  
Author(s):  
L M Lenton ◽  
C A Behm ◽  
F L Bygrave

The non-esterified fatty acid (NEFA) content and phospholipid composition of mitochondria isolated from the livers of Wistar rats infected with Fasciola hepatica were examined in relation to the aberrant mitochondrial respiration previously reported [Rule, Behm, and Bygrave (1989) Biochem. J. 260, 517-523]. At 2 weeks post-infection, elevated NEFA levels were associated with uncoupling of mitochondrial respiration that was reversible in vitro by the addition of BSA. State IV respiration rates showed a strong correlation with NEFA content. At 3 weeks post-infection, NEFA content had increased further and uncoupled mitochondria no longer showed any response to BSA. 31P-NMR analyses of cholate extracts of mitochondria from infected livers at 3 weeks post-infection revealed a marked loss of several major phospholipid species with a concomitant increase in catabolic products, particularly glycerophosphocholine and glycerophosphoethanolamine. Similar changes were observed in microsomal extracts. The NEFA content and phospholipid composition of mitochondria isolated from infected, athymic nude rats were not significantly different from uninfected, athymic rats. These findings suggest that uncoupling of liver mitochondria during infection with F. hepatica is the result of phospholipase activation mediated by the immune system of the host.


2020 ◽  
Vol 2 (2) ◽  
pp. 135-145
Author(s):  
O C Jegede

Several plants are found to possess potent medicinal and phytochemical compounds used globally for the treatment of diseases and the discovery of new drugs. Plants with anthelmintic properties have attained a great interest due to their usage in treatment of parasitic (helminthic) diseases that cause major economic loss, resulting to reduced livestock production capacity of farmers. The major impediment in the livestock subsector is the increasing problems of development of resistance to synthetic drugs by the helminths and or high cost of commercially produced anthelmintics and their resultant side effects than the treatment efficacy in the host. Helminthosis is a clinical condition that represents one of the commonly encountered and most important diseases in ruminant farming. This clinical condition is aggravated by indiscriminate use of anthelmintics in an attempt to control the infection, thereby causing resistance of the parasitic helminths to synthetic drugs. This has led to the screening of plant extracts for their anthelmintic properties thereby serving as alternative strategies against gastrointestinal parasitic resistance. However, eighty percent of the world populations use natural plant compounds as anthelmintics for treatment of parasitic infections. Hence, the folkloric claims of the anthelmintic properties of plants extracts for the treatment of helminthes is necessarily important and of great interest. Therefore, this review unveils previous pharmacological and preliminary studies on plants as anthelmintics able to reduce helmintic infections and overcoming helminth parasite resistance.


2013 ◽  
Vol 55 (5) ◽  
pp. 303-308 ◽  
Author(s):  
Kumari Sunita ◽  
Pradeep Kumar ◽  
Vinay Kumar Singh ◽  
Dinesh Kumar Singh

SUMMARY A food-borne trematode infection fascioliasis is one among common public health problems worldwide. It caused a great economic loss for the human race. Control of snail population below a certain threshold level is one of the important methods in the campaign to reduce the incidence of fascioliasis. The life cycle of the parasite can be interrupted by killing the snail or Fasciola larva redia and cercaria inside of the snail Lymnaea acuminata. In vitro toxicity of different binary combinations (1:1 ratio) of plant-derived larvicidal active components such as citral, ferulic acid, umbelliferone, azadirachtin and allicin against Fasciola redia and cercaria were tested. The mortality of larvae was observed at 2h, 4h, 6h and 8h of treatment. In in vitro condition azadirachtin + allicin (1:1 ratio) was highly toxic against redia and cercaria (8h LC50 0.006 and 0.005 mg/L). Toxicity of citral + ferulic acid was lowest against redia and cercaria larvae.


2009 ◽  
Vol 191 (13) ◽  
pp. 4419-4426 ◽  
Author(s):  
Julia Esbelin ◽  
Jean Armengaud ◽  
Assia Zigha ◽  
Catherine Duport

ABSTRACT In the food-borne pathogen Bacillus cereus F4430/73, the production of major virulence factors hemolysin BL (Hbl) and nonhemolytic enterotoxin (Nhe) is regulated through complex mechanisms. The two-component regulatory system ResDE is involved in the activation of hbl and nhe transcription. Here, the response regulator ResD and the sensor kinase ResE were overexpressed and purified, and autophosphorylation of ResE and transphosphorylation of ResD by ResE were demonstrated in vitro. ResD is mainly monomeric in solution, regardless of its phosphorylation state. ResD was shown to interact directly with promoter regions (p) of the enterotoxin regulator genes resDE, fnr, and plcR and the enterotoxin structural genes nhe and hbl, but with different affinities. Binding of ResD to pplcR, pnhe, and phbl was not dependent on the ResD phosphorylation status. In contrast, ResD phosphorylation significantly increased interactions between ResD and presDE and pfnr. Taken together, these results showed that phosphorylation of ResD results in a different target expression pattern. Furthermore, ResD and the redox activator Fnr were found to physically interact and simultaneously bind their target DNAs. We propose that unphosphorylated ResD acts as an antiactivator of Fnr, while phosphorylated ResD acts as a coactivator of Fnr. Finally, our findings represent the first molecular evidence of the role of ResDE as a sentinel system capable of sensing redox changes and coordinating a response that modulates B. cereus virulence.


2020 ◽  
Author(s):  
Sara Correia Santos ◽  
Thorsten Bischler ◽  
Alexander J. Westermann ◽  
Jörg Vogel

ABSTRACTA full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA-sequencing (MAPS), we identify PinT ligands in bacteria under in-vitro conditions mimicking specific stages of the infection cycle, and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually preventing actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.


1997 ◽  
Vol 60 (3) ◽  
pp. 267-271 ◽  
Author(s):  
GIOVANNI ANTONINI ◽  
MARIA ROSARIA CATANIA ◽  
RITA GRECO ◽  
CATIA LONGHI ◽  
MARIA GRAZIA PISCIOTTA ◽  
...  

We have investigated the possible role of bovine lactoferrin in protecting the intestinal epithelium from bacterial infections, using as an in vitro model enterocyte-like cell lines HT-39 and Caco-2 infected with a food-borne pathogen, Listeria monocytogenes. When infection occurred in the presence of 1 mg/ml of bovine lactoferrin, in the form of apolactoferrin or iron- or manganese-saturated forms, the adhesion of bacteria to eukaryotk cells was unaffected, but the number of internalized bacteria was reduced by 42- to 125-fold. The possibility of a toxic effect of lactoferrin was excluded, because bovine lactoferrin was used at nonbactericidal and noncytotoxic concentrations.


Sign in / Sign up

Export Citation Format

Share Document