scholarly journals Characterization of the gut DNA and RNA viromes in a cohort of Chinese residents and visiting Pakistanis

2020 ◽  
Author(s):  
Qiulong Yan ◽  
Yu Wang ◽  
Xiuli Chen ◽  
Hao Jin ◽  
Guangyang Wang ◽  
...  

AbstractBackgroundTrillions of viruses inhabit the gastrointestinal tract. Some of them have been well-studied on their roles in infection and human health, but the majority remain unsurveyed. It has been established that the composition of the gut virome is highly variable based on the changes of diet, physical state, and environmental factors. However, the effect of host genetic factors, e.g. ethnic origin, on the gut virome is rarely investigated.Methods and ResultsHere, we characterized and compared the gut virome in a cohort of local Chinese residents and visiting Pakistani individuals, each group containing 24 healthy adults and 6 children. Using metagenomic shotgun sequencing and assembly of fecal samples, a huge number of viral operational taxonomic units (vOTUs) were identified for profiling the DNA and RNA viromes. National background contributed a primary variation to individuals’ gut virome. Compared with the Chinese adults, the Pakistan adults showed higher macrodiversity and different compositional and functional structures in their DNA virome and lower diversity and altered composition in their RNA virome. The virome variations of Pakistan children were inherited from the that of the adults but also tended to share similar characteristics with the Chinese cohort. We also analyzed and compared the bacterial microbiome between two cohorts and further revealed numerous connections between virus and bacterial host. Statistically, the gut DNA and RNA viromes were covariant to some extent (p<0.001), and they both influenced the holistic bacterial composition and vice versa.ConclusionsThis study provides an overview of gut viral community in Chinese and visiting Pakistanis and proposes a considerable role of ethnic origin in shaping the virome.

2020 ◽  
Author(s):  
Qiulong Yan ◽  
Yu Wang ◽  
Xiuli Chen ◽  
Hao Jin ◽  
Guangyang Wang ◽  
...  

Abstract Background: Trillions of viruses inhabit the gastrointestinal tract. Some of them have been well-studied on their roles in infection and human health, but the majority remain unsurveyed. It has been established that the composition of the gut virome is highly variable based on the changes of diet, physical state, and environmental factors. However, the effect of host genetic factors, e.g. ethnic origin, on the gut virome is rarely investigated. Results: Here, we characterized and compared the gut virome in a cohort of local Chinese residents and visiting Pakistani individuals, each group containing 24 healthy adults and 6 children. Using metagenomic shotgun sequencing and assembly of fecal samples, a huge number of viral operational taxonomic units (vOTUs) were identified for profiling the DNA and RNA viromes. National background contributed a primary variation to individuals’ gut virome. Compared with the Chinese adults, the Pakistan adults showed higher macrodiversity and different compositional and functional structures in their DNA virome and lower diversity and altered composition in their RNA virome. The virome variations of Pakistan children were inherited from the that of the adults but also tended to share similar characteristics with the Chinese cohort. We also analyzed and compared the bacterial microbiome between two cohorts and further revealed numerous connections between virus and bacterial host. Statistically, the gut DNA and RNA viromes were covariant to some extent (p<0.001), and they both influenced the holistic bacterial composition and vice versa.Conclusions: we systematically described the baseline gut virome in a well-characterized cohort of Chinese and visiting Pakistanis and demonstrated that the national background contributed a primary variation to gut virome. The mechanisms underlying the difference between two cohorts remain unclear, but the ethnic factor must be proposed and considered in designing future studies of the virome.


2021 ◽  
Vol 9 (3) ◽  
pp. 659
Author(s):  
Elias Asimakis ◽  
Panagiota Stathopoulou ◽  
Apostolis Sapounas ◽  
Kanjana Khaeso ◽  
Costas Batargias ◽  
...  

Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.


2020 ◽  
Vol 13 ◽  
pp. 175628482097120
Author(s):  
Xinyun Qiu ◽  
Xiaojing Zhao ◽  
Xiufang Cui ◽  
Xiaqiong Mao ◽  
Nana Tang ◽  
...  

Intestinal microbiota dysbiosis has been described in inflammatory bowel disease (IBD), but data from China are limited. In this study, we performed molecular analysis of the fecal microbial community from 20 healthy Chinese subjects and 25 patients with Crohn’s disease (CD), and evaluated associations with bacterial and fungal compositions. Decreased richness and diversity of bacterial composition was observed in the CD group compared with healthy (H) subjects. Significant structural differences in bacterial (but not fungal) composition among healthy controls and CD patients were found. A reduction in Firmicutes and Actinobacteria abundance, and overrepresentation of Proteobacteria were observed in the CD patients compared with the H group. The Escherichia-Shigella genus was overrepresented in the CD group, whereas Faecalibacterium, Gemmiger, Bifidobacterium, Romboutsia, Ruminococcus, Roseburia, and Fusicatenibacter abundance were decreased in the CD group compared with H subjects. Differences in fungal microbiota between the H and CD groups were observed at the genus rather than at the phylum level. The Candida genus was overrepresented in the CD (active disease) group compared with the H group, whereas no difference between CD (remission) and H groups was observed. Aspergillus, unclassified_Sordariomycetes, and Penicillium genera had greater representation in the H subjects compared with the CD group. Bacterial and fungal intra- and inter-kingdom correlations were observed between the H and CD groups. Therefore, fecal bacterial and fungal microbiome communities differed considerably between H and CD patients, and between Chinese and Western populations. The role of gut microbiota in homeostasis and in gastrointestinal disorders should be investigated further.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jesús Rojas-Jaimes ◽  
David Lindo-Seminario ◽  
Germán Correa-Núñez ◽  
Benoit Diringer

AbstractTicks are arthropods that can host and transmit pathogens to wild animals, domestic animals, and even humans. The bacterial microbiome of adult (males and females) and nymph Rhipicephalus microplus ticks collected from a collared peccary, Pecari tajacu, captured in the rural area of Botijón Village in the Amazon region of Madre de Dios, Peru, was evaluated using metagenomics. The Chao1 and Shannon–Weaver analyses indicated greater bacterial richness and diversity in female ticks (GARH; 375–4.15) and nymph ticks (GARN; 332–4.75) compared to that in male ticks (GARM; 215–3.20). Taxonomic analyses identified 185 operational taxonomic units representing 147 bacterial genera. Of the 25 most prevalent genera, Salmonella (17.5%) and Vibrio (15.0%) showed the highest relative abundance followed by several other potentially pathogenic genera, such as Paracoccus (7.8%), Staphylococcus (6.8%), Pseudomonas (6.6%), Corynebacterium (5.0%), Cloacibacterium (3.6%), and Acinetobacter (2.5%). In total, 19.7% of the detected genera are shared by GARH, GARM, and GARN, and they can be considered as the core microbiome of R. microplus. To the best of our knowledge, this study is the first to characterize the microbiome of ticks collected from P. tajacu and to report the presence of Salmonella and Vibrio in R. microplus. The pathogenic potential and the role of these bacteria in the physiology of R. microplus should be further investigated due to the possible implications for public health and animal health in populations neighboring the habitat of P. tajacu.


2021 ◽  
Vol 12 ◽  
Author(s):  
David Johnston-Monje ◽  
Janneth P. Gutiérrez ◽  
Luis Augusto Becerra Lopez-Lavalle

Plant microbiomes play an important role in agricultural productivity, but there is still much to learn about their provenance, diversity, and organization. In order to study the role of vertical transmission in establishing the bacterial and fungal populations of juvenile plants, we used high-throughput sequencing to survey the microbiomes of seeds, spermospheres, rhizospheres, roots, and shoots of the monocot crops maize (B73), rice (Nipponbare), switchgrass (Alamo), Brachiaria decumbens, wheat, sugarcane, barley, and sorghum; the dicot crops tomato (Heinz 1706), coffee (Geisha), common bean (G19833), cassava, soybean, pea, and sunflower; and the model plants Arabidopsis thaliana (Columbia-0) and Brachypodium distachyon (Bd21). Unsterilized seeds were planted in either sterile sand or farm soil inside hermetically sealed jars, and after as much as 60 days of growth, DNA was extracted to allow for amplicon sequence-based profiling of the bacterial and fungal populations that developed. Seeds of most plants were dominated by Proteobacteria and Ascomycetes, with all containing operational taxonomic units (OTUs) belonging to Pantoea and Enterobacter. All spermospheres also contained DNA belonging to Pseudomonas, Bacillus, and Fusarium. Despite having only seeds as a source of inoculum, all plants grown on sterile sand in sealed jars nevertheless developed rhizospheres, endospheres, and phyllospheres dominated by shared Proteobacteria and diverse fungi. Compared to sterile sand-grown seedlings, growth on soil added new microbial diversity to the plant, especially to rhizospheres; however, all 63 seed-transmitted bacterial OTUs were still present, and the most abundant bacteria (Pantoea, Enterobacter, Pseudomonas, Klebsiella, and Massilia) were the same dominant seed-transmitted microbes observed in sterile sand-grown plants. While most plant mycobiome diversity was observed to come from soil, judging by read abundance, the dominant fungi (Fusarium and Alternaria) were also vertically transmitted. Seed-transmitted fungi and bacteria appear to make up the majority of juvenile crop plant microbial populations by abundance, and based on occupancy, there seems to be a pan-angiosperm seed-transmitted core bacterial microbiome. Further study of these seed-transmitted microbes will be important to understand their role in plant growth and health, as well as their fate during the plant life cycle and may lead to innovations for agricultural inoculant development.


2020 ◽  
Author(s):  
JESUS ROJAS-JAIMES ◽  
David Lindo Seminario ◽  
German Correa Núñez ◽  
Benoit Diringer

Abstract Background: Ticks are arthropods that can host and transmit pathogens to wild animals, domestic animals, and even humans. Methods: The bacterial microbiome of adult (males and females) and nymph Rhipicephalus microplus ticks collected from a collared peccary, Pecari tajacu, captured in the rural area of ​​Botijón Village in the Amazon region of Madre de Dios, Peru, was evaluated using metagenomics. Results: The Chao1 and Shannon–Weaver analyses indicated greater bacterial richness and diversity in female ticks (GARH; 375–4.15) and nymph ticks (GARN; 332–4.75) compared to that in male ticks (GARM; 215–3.20). Taxonomic analyses identified 185 operational taxonomic units representing 147 bacterial genera. Of the 25 most prevalent genera, Salmonella (17.5%) and Vibrio (15.0%) showed the highest relative abundance followed by several other potentially pathogenic genera, such as Paracoccus (7.8%), Staphylococcus (6.8%), Pseudomonas (6.6%), Corynebacterium (5.0%), Cloacibacterium (3.6%), and Acinetobacter (2.5%). In total, 19.7% of the detected genera are shared by GARH, GARM, and GARN, and they can be considered as the core microbiome of R. microplus.Conclusions: To the best of our knowledge, this study is the first to characterize the microbiome of ticks collected from P. tajacu and to report the presence of Salmonella and Vibrio in R. microplus. The pathogenic potential and the role of these bacteria in the physiology of R. microplus should be further investigated due to the possible implications on public health and animal health in populations neighboring the habitat of P. tajacu.


Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


Author(s):  
Natalia Carolina Petrillo

ResumenEn el presente trabajo se intentará mostrar que la fenomenología no conduce a una postura solipsista. Para ello, se caracterizará en qué consiste el solipsismo. Luego, se intentará refutar a lo que se ha de llamar “solipsismo metafísico” y “solipsismo gnoseológico”, con el objetivo principal de poner de manifiesto el fundamento de motivación para la salida de la ficción solipsista.Palabras claves:Phenomenology – solipsim – empatía - HusserlAbstractWith the aim of showing that phenomenology does not lead in solipsism, I will first attempt a characterization of it. Then, I will attempt a refutation of the so-called “metaphysical” and “epistemological” solipsisms. Finally, the nature and role of Husserl´s solipsistic fiction is examined, and the grounds that motivate the overcoming of this standpoint are disclosed.key wordsFenomenología – solipsismo - empathy – Husserl


Sign in / Sign up

Export Citation Format

Share Document