scholarly journals In vivo Restricted-Diffusion Imaging (RDI) is sensitive to differences in axonal density in typical children and adults

2020 ◽  
Author(s):  
Dea Garic ◽  
Fang-Cheng Yeh ◽  
Paulo Graziano ◽  
Anthony Steven Dick

ABSTRACTBackgroundThe ability to dissociate axonal density in vivo from other microstructural properties of white matter is important for the diagnosis and treatment of neurologic disease, and new methods to do so are being developed. We investigated one such method–restricted diffusion imaging (RDI)–to see whether it can more accurately replicate histological axonal density patterns in the corpus callosum (CC) of adults and children compared to diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and generalized q-sampling imaging (GQI) methods. To do so, we compared known axonal density patterns defined by histology to to diffusion-weighted imaging (DWI) scans of 840 healthy 20- to 40-year-old adults, and, in a replication and extension, to DWI scans of 129 typically developing 7-month-old to 18-year-old children and adolescents. Contrast analyses were used to to compare pattern similarities between the in-vivo metric and previously-published histological density models. We found that RDI was effective at mapping axonal density of small (Cohen’s d= 2.60) and large fiber sizes (Cohen’s d= 2.84) in adults. The same pattern was observed in the developing sample (Cohen’s d= 3.09 and 3.78, respectively). Other metrics, notably NODDI’s intracellular volume fraction (ICVF), were also sensitive to differences in axonal density across the longitudinal axis of the CC. In conclusion, the study showed that RDI is effective at measuring axonal density of small and large axons in adults and children, with both single- and multi-shell acquisition DWI data. Its effectiveness and availability to be used on standard as well as advanced DWI acquisitions makes it a promising method in clinical settings.

2021 ◽  
Vol 226 (8) ◽  
pp. 2689-2705
Author(s):  
Dea Garic ◽  
Fang-Cheng Yeh ◽  
Paulo Graziano ◽  
Anthony Steven Dick

2012 ◽  
Vol 1 (1) ◽  
pp. 78-91 ◽  
Author(s):  
S Kollias

Diffusion tensor imaging (DTI) is a neuroimaging MR technique, which allows in vivo and non-destructive visualization of myeloarchitectonics in the neural tissue and provides quantitative estimates of WM integrity by measuring molecular diffusion. It is based on the phenomenon of diffusion anisotropy in the nerve tissue, in that water molecules diffuse faster along the neural fibre direction and slower in the fibre-transverse direction. On the basis of their topographic location, trajectory, and areas that interconnect the various fibre systems of the mammalian brain are divided into commissural, projectional and association fibre systems. DTI has opened an entirely new window on the white matter anatomy with both clinical and scientific applications. Its utility is found in both the localization and the quantitative assessment of specific neuronal pathways. The potential of this technique to address connectivity in the human brain is not without a few methodological limitations. A wide spectrum of diffusion imaging paradigms and computational tractography algorithms has been explored in recent years, which established DTI as promising new avenue, for the non-invasive in vivo mapping of structural connectivity at the macroscale level. Further improvements in the spatial resolution of DTI may allow this technique to be applied in the near future for mapping connectivity also at the mesoscale level. DOI: http://dx.doi.org/10.3126/njr.v1i1.6330 Nepalese Journal of Radiology Vol.1(1): 78-91


2018 ◽  
Author(s):  
Mark Drakesmith ◽  
Derek K Jones

AbstractThe conduction velocity (CV) of action potentials along axons is a key neurophysiological property central to neural communication. The ability to estimate CV in humans in vivo from non-invasive MRI methods would therefore represent a significant advance in neuroscience. However, there are 2 major challenges that this paper aims to address: (1) much of the complexity of the neurophysiology of action potentials cannot be captured with currently available MRI techniques. Therefore, we seek to establish the variability in CV that can be captured when predicting CV purely from parameters that can be estimated from MRI (axon diameter and g-ratio); and (2) errors inherent in existing MRI-based biophysical models of tissue will propagate through to estimates of CV, the extent to which is currently unknown.Issue (1) is investigated by performing a sensitivity analysis on a comprehensive model of axon electrophysiology and determining the relative sensitivity to various morphological and electrical parameters.The investigations suggest that 89.2 % of the variance in CV is accounted for by variation in AD and g-ratio. The observed dependency of CV on AD and g-ratio is well characterised by a previously reported model by Rushton.Issue (2) is investigated through simulation of diffusion and relaxometry MRI data for a range of axon morphologies, applying models of restricted diffusion and relaxation processes to derive estimates of axon volume fraction (AVF), AD and g-ratio and estimating CV from the derived parameters. The results show that errors in the AVF have the biggest detrimental impact on estimates of CV, particularly for sparse fibre populations (AVF< 0.3). CV estimates are most accurate (below 5% error) where AVF is above 0.3, g-ratio is between 0.6 and 0.85 and AD is below 10 µm. Fortunately, these parameter bounds are typically satisfied by most myelinated axons.In conclusion, we demonstrate that accurate CV estimates can be inferred in axon populations across a range of configurations, except in some exceptional cases or where axonal density is low. As a proof of concept, for the first time, we generated an in vivo map of conduction velocity in the human corpus callosum with estimates consistent with values previously reported from invasive electrophysiology in primates.


Author(s):  
S Masjoodi ◽  
H Hashemi ◽  
M A Oghabian ◽  
G Sharifi

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We studied whether extracted parameters of DTI, and NODDI models can be used to differentiate between edematous, tumoral, and normal areas in brain white matter (WM).Material and Methods: 12 patients with peritumoral edema underwent 3T multi-shell diffusion imaging with b-values of 1000 and 2000 smm-2 in 30 and 64 gradient directions, respectively. We fitted DTI and NODDI to data in manually drawn regions of interest and used their derived parameters to characterize edematous, tumoral and normal brain areas.Results: We found that DTI parameters fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) all significantly differentiated edematous from contralateral normal brain WM (p<0.005). However, only FA was found to distinguish between edematous WM fibers and tumor invaded fibers (p = 0.001). Among NODDI parameters, the intracellular volume fraction (ficvf) had the best distinguishing power with (p = 0.001) compared with the isotropic volume fraction (fiso), the orientation dispersion index (odi), and the concentration parameter of Watson distribution (κ), while comparing fibers inside normal, tumoral, and edematous areas.Conclusion: The combination of two diffusion based methods, i.e. DTI and NODDI parameters can distinguish and characterize WM fibers involved in edematus, tumoral, and normal brain areas with reasonable confidence. Further studies will be required to improve the detectability of WM fibers inside the solid tumor if they hypothetically exist in tumoral parenchyma.


2021 ◽  
Author(s):  
Chiara Casella ◽  
Maxime Chamberland ◽  
Pedro Luque-Laguna ◽  
Greg D Parker ◽  
Anne E Rosser ◽  
...  

White matter (WM) alterations have been observed early in Huntington's disease (HD) progression but their role in the disease-pathophysiology remains unknown. We exploited ultra-strong-gradient MRI to tease apart contributions of myelin (with the magnetization transfer ratio), and axon density (with the restricted volume fraction from the Composite Hindered and Restricted Model of Diffusion) to WM differences between premanifest HD patients and age- and sex-matched controls. Diffusion tensor MRI (DT-MRI) measures were also assessed. We used tractometry to investigate region-specific changes across callosal segments with well-characterized early- and late-myelinating axonal populations, while brain-wise alterations were explored with tract-based cluster analysis (TBCA). Behavioural measures were included to explore disease-associated brain-function relationships. We detected lower myelin in the rostrum of patients (tractometry: p = 0.0343; TBCA: p = 0.030), but higher myelin in their splenium (p = 0.016). Importantly, patients' myelin and mutation size were positively associated (all p-values < 0.01), indicating that increased myelination might be a direct result of the mutation. Finally, myelin was higher than controls in younger patients but lower in older patients (p = 0.003), suggesting detrimental effects of increased myelination later in the course of the disease. Higher FR in patients' left cortico-spinal tract (CST) (p = 0.03) was detected, and was found to be positively associated with MTR in the posterior callosum (p = 0.033), possibly suggesting compensation to myelin alterations. This comprehensive, ultra-strong gradient MRI investigation provides novel evidence of CAG-driven myelin alterations in premanifest HD which may reflect neurodevelopmental, rather than neurodegenerative disease-associated changes.


2011 ◽  
Vol 70 (suppl_1) ◽  
pp. ons145-ons156 ◽  
Author(s):  
Wentao Wu ◽  
Laura Rigolo ◽  
Lauren J. O'Donnell ◽  
Isaiah Norton ◽  
Sargent Shriver ◽  
...  

Abstract BACKGROUND: Knowledge of the individual course of the optic radiations (ORs) is important to avoid postoperative visual deficits. Cadaveric studies of the visual pathways are limited because it has not been possible to separate the OR from neighboring tracts accurately and results may not apply to individual patients. Diffusion tensor imaging studies may be able to demonstrate the relationships between the OR and neighboring fibers in vivo in individual subjects. OBJECTIVE: To use diffusion tensor imaging tractography to study the OR and the Meyer loop (ML) anatomy in vivo. METHODS: Ten healthy subjects underwent magnetic resonance imaging with diffusion imaging at 3 T. With the use of a fiducial-based diffusion tensor imaging tractography tool (Slicer 3.3), seeds were placed near the lateral geniculate nucleus to reconstruct individual visual pathways and neighboring tracts. Projections of the ORs onto 3-dimensional brain models were shown individually to quantify relationships to key landmarks. RESULTS: Two patterns of visual pathways were found. The OR ran more commonly deep in the whole superior and middle temporal gyri and superior temporal sulcus. The OR was closely surrounded in all cases by an inferior longitudinal fascicle and a parieto/occipito/temporo-pontine fascicle. The mean left and right distances between the tip of the OR and temporal pole were 39.8 ± 3.8 and 40.6 ± 5.7 mm, respectively. CONCLUSION: Diffusion tensor imaging tractography provides a practical complementary method to study the OR and the Meyer loop anatomy in vivo with reference to individual 3-dimensional brain anatomy.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Mark Höller ◽  
Kay-M. Otto ◽  
Uwe Klose ◽  
Samuel Groeschel ◽  
Hans-H. Ehricke

Line integral convolution (LIC) is used as a texture-based technique in computer graphics for flow field visualization. In diffusion tensor imaging (DTI), LIC bridges the gap between local approaches, for example directionally encoded fractional anisotropy mapping and techniques analyzing global relationships between brain regions, such as streamline tracking. In this paper an advancement of a previously published multikernel LIC approach for high angular resolution diffusion imaging visualization is proposed: a novel sampling scheme is developed to generate anisotropic glyph samples that can be used as an input pattern to the LIC algorithm. Multicylindrical glyph samples, derived from fiber orientation distribution (FOD) functions, are used, which provide a method for anisotropic packing along integrated fiber lines controlled by a uniform random algorithm. This allows two- and three-dimensional LIC maps to be generated, depicting fiber structures with excellent contrast, even in regions of crossing and branching fibers. Furthermore, a color-coding model for the fused visualization of slices from T1 datasets together with directionally encoded LIC maps is proposed. The methodology is evaluated by a simulation study with a synthetic dataset, representing crossing and bending fibers. In addition, results fromin vivostudies with a healthy volunteer and a brain tumor patient are presented to demonstrate the method's practicality.


2013 ◽  
Vol 44 (S 01) ◽  
Author(s):  
M Breu ◽  
D Reisinger ◽  
D Wu ◽  
Y Zhang ◽  
A Fatemi ◽  
...  

1979 ◽  
Vol 42 (02) ◽  
pp. 603-610 ◽  
Author(s):  
J H Adams ◽  
J R A Mitchell

SummaryThe ability of potential anti-thrombotic agents to modify platelet-thrombus formation in injured cerebral arteries in the rabbit was tested. Low doses of heparin were without effect, while higher doses produced variable suppression of white body formation but at the expense of bleeding. Aspirin did not inhibit white body formation but another non-steroid anti-inflammatory agent, flurbiprofen was able to do so, as was the anti-gout agent, sulphinpyrazone. Magnesium salts both topically and parenterally, suppressed thrombus formation and increased the concentration of ADP which was required to initiate thrombus production at minor injury sites.


Sign in / Sign up

Export Citation Format

Share Document