scholarly journals Aquaporin-3 regulates endosome-to-cytosol transfer via lipid peroxidation for cross presentation

2020 ◽  
Author(s):  
Sam C. Nalle ◽  
Rosa Barreira da Silva ◽  
Hua Zhang ◽  
Markus Decker ◽  
Cecile Chalouni ◽  
...  

ABSTRACTAntigen cross presentation, whereby exogenous antigens are presented by MHC class I molecules to CD8+ T cells, is essential for generating adaptive immunity to pathogens and tumor cells (1). Following endocytosis, it is widely understood that protein antigens must be transferred from endosomes to the cytosol where they are subject to ubiquitination and proteasome degradation prior to being translocated into the endoplasmic reticulum (ER), or possibly endosomes, via the TAP1/TAP2 complex (2, 3). Revealing how antigens egress from endocytic organelles (endosome-to-cytosol transfer, ECT), however, has proved vexing. Here, we used two independent screens to identify the hydrogen peroxide-transporting channel aquaporin-3 (AQP3) as a regulator of ECT. AQP3 overexpression increased ECT, whereas AQP3 knockout or knockdown decreased ECT. Mechanistically, AQP3 appears to be important for hydrogen peroxide entry into the endosomal lumen where it affects lipid peroxidation and subsequent antigen release. AQP3-mediated regulation of ECT was functionally significant, as AQP3 modulation had a direct impact on the efficiency of antigen cross presentation in vitro. Finally, AQP3-/- mice exhibited a reduced ability to mount an anti-viral response and cross present exogenous extended peptide. Together, these results indicate that the AQP3-mediated transport of hydrogen peroxide can regulate endosomal lipid peroxidation and suggest that compromised membrane integrity and coordinated release of endosomal cargo is a likely mechanism for ECT.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0238484
Author(s):  
Sam C. Nalle ◽  
Rosa Barreira da Silva ◽  
Hua Zhang ◽  
Markus Decker ◽  
Cecile Chalouni ◽  
...  

Antigen cross presentation, whereby exogenous antigens are presented by MHC class I molecules to CD8+ T cells, is essential for generating adaptive immunity to pathogens and tumor cells. Following endocytosis, it is widely understood that protein antigens must be transferred from endosomes to the cytosol where they are subject to ubiquitination and proteasome degradation prior to being translocated into the endoplasmic reticulum (ER), or possibly endosomes, via the TAP1/TAP2 complex. Revealing how antigens egress from endocytic organelles (endosome-to-cytosol transfer, ECT), however, has proved vexing. Here, we used two independent screens to identify the hydrogen peroxide-transporting channel aquaporin-3 (AQP3) as a regulator of ECT. AQP3 overexpression increased ECT, whereas AQP3 knockout or knockdown decreased ECT. Mechanistically, AQP3 appears to be important for hydrogen peroxide entry into the endosomal lumen where it affects lipid peroxidation and subsequent antigen release. AQP3-mediated regulation of ECT was functionally significant, as AQP3 modulation had a direct impact on the efficiency of antigen cross presentation in vitro. Finally, AQP3-/- mice exhibited a reduced ability to mount an anti-viral response and cross present exogenous extended peptide. Together, these results indicate that the AQP3-mediated transport of hydrogen peroxide can regulate endosomal lipid peroxidation and suggest that compromised membrane integrity and coordinated release of endosomal cargo is a likely mechanism for ECT.


2015 ◽  
Vol 36 (6) ◽  
pp. 3699
Author(s):  
Rodrigo Arruda de Oliveira ◽  
Marco Antônio De Oliveira Viu ◽  
Maria Lúcia Gambarini

Handling equine semen during the refrigeration process reduces sperm viability, and consequently causes membrane lipid peroxidation, among other challenges. The present study aimed to evaluate the in vitro effects of glutathione (control, 1. 0, 1. 5, and 2. 5 mM) on equine semen in a refrigeration protocol of 16ºC for 36 hours. The following variables were evaluated after 0, 12, 24, and 36 hours refrigeration: total sperm motility, vigor, viability, and plasma and acrosomal membrane integrity. Motility was higher with 2. 5mM of glutathione (57. 8 ± 7. 3) after 12 hours of refrigeration compared to the control (53. 2 ± 8. 3) (P < 0. 05). After 36 hours of refrigeration, motility was higher with 1. 5 mM (43. 4 ± 12. 7) and 2. 5mM glutathione (45. 5 ± 6. 2), than it was with 1mM glutathione (38. 2 ± 9) and the control (35. 5 ± 18. 4) (P < 0. 05), respectively. Vigor was highest with 1. 5mM glutathione (3. 7 ± 0. 3) after 36 hours compared to the control (3. 2 ± 1. 1), (P < 0. 05). Viability differed between control and 1mM treatments (79. 5 ± 1. 8) only after 24 hours (75. 5 ± 9. 7) (P < 0. 05). Throughout the investigation, no significant differences were noted in plasma and acrosomal membrane integrity (P > 0. 05). The 1. 5 and 2. 5mM glutathione levels were more efficient in protecting sperm cells and yielded higher total motility values after 36 hours of refrigeration.


Blood ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1407-1417 ◽  
Author(s):  
Francesca Spadaro ◽  
Caterina Lapenta ◽  
Simona Donati ◽  
Laura Abalsamo ◽  
Vincenzo Barnaba ◽  
...  

Abstract Cross-presentation allows antigen-presenting cells to present exogenous antigens to CD8+ T cells, playing an essential role in controlling infections and tumor development. IFN-α induces the rapid differentiation of human mono-cytes into dendritic cells, known as IFN-DCs, highly efficient in mediating cross-presentation, as well as the cross-priming of CD8+ T cells. Here, we have investigated the mechanisms underlying the cross-presentation ability of IFN-DCs by studying the intracellular sorting of soluble ovalbumin and nonstructural-3 protein of hepatitis C virus. Our results demonstrate that, independently from the route and mechanism of antigen entry, IFN-DCs are extraordinarily competent in preserving internalized proteins from early degradation and in routing antigens toward the MHC class-I processing pathway, allowing long-lasting, cross-priming capacity. In IFN-DCs, both early and recycling endosomes function as key compartments for the storage of both antigens and MHC-class I molecules and for proteasome- and transporter-associated with Ag processing–dependent auxiliary cross-presentation pathways. Because IFN-DCs closely resemble human DCs naturally occurring in vivo in response to infections and other danger signals, these findings may have important implications for the design of vaccination strategies in neoplastic or chronic infectious diseases.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4375-4386 ◽  
Author(s):  
Susanne Müerköster ◽  
Marian Rocha ◽  
Paul R. Crocker ◽  
Volker Schirrmacher ◽  
Victor Umansky

We recently established an effective immune T-cell–mediated graft-versus-leukemia (GVL) murine model system in which complete tumor remissions were achievable even in advanced metastasized cancer. We now describe that this T-cell–mediated therapy is dependent on host macrophages expressing the lymphocyte adhesion molecule sialoadhesin (Sn). Depletion of Kupffer cells in tumor-bearing mice during adoptive immunotherapy (ADI) or the treatment of these animals with anti-Sn monoclonal antibodies led to complete or partial inhibition of the immune T-cell–mediated therapeutic effect. Furthermore, Sn+ host macrophages in livers formed clusters during ADI with donor CD8 T cells. To test for a possible antigen presentation function of these macrophages, we used as an in vitro model the antigen β-galactosidase for which a dominant major histocompatibility complex (MHC) class I Ld-restricted peptide epitope is known to be recognized by specific CD8 cytotoxic T lymphocytes (CTL). We demonstrate that purified Sn+ macrophages can process exogenous β-galactosidase and stimulate MHC class I peptide-restricted CTL responses. Thus, Sn+ macrophages, which are significantly increased in the liver after ADI, may process tumor-derived proteins via the MHC class I pathway as well as via the MHC class II pathway, as shown previously, and present respective peptide epitopes to CD8 as well as to CD4 immune T cells, respectively. The synergistic interactions observed before between immune CD4 and CD8 T cells during ADI could thus occur in the observed clusters with Sn+ host macrophages.


2002 ◽  
Vol 196 (6) ◽  
pp. 817-827 ◽  
Author(s):  
Joke M.M. den Haan ◽  
Michael J. Bevan

Murine splenic dendritic cells (DCs) can be divided into two subsets based on CD8α expression, but the specific role of each subset in stimulation of T cells is largely unknown. An important function of DCs is the ability to take up exogenous antigens and cross-present them in the context of major histocompatibility complex (MHC) class I molecules to CD8+ T cells. We previously demonstrated that, when cell-associated ovalbumin (OVA) is injected into mice, only the CD8+ DC subset cross-presents OVA in the context of MHC class I. In contrast to this selectivity with cell-associated antigen, we show here that both DC subsets isolated from mice injected with OVA/anti-OVA immune complexes (OVA-IC) cross-present OVA to CD8+ T cells. The use of immunoglobulin G Fc receptor (FcγR) common γ-chain–deficient mice revealed that the cross-presentation by CD8− DCs depended on the expression of γ-chain–containing activating FcγRs, whereas cross-presentation by CD8+ DCs was not reduced in γ-chain–deficient mice. These results suggest that although CD8+ DCs constitutively cross-present exogenous antigens in the context of MHC class I molecules, CD8− DCs only do so after activation, such as via ligation of FcγRs. Cross-presentation of immune complexes may play an important role in autoimmune diseases and the therapeutic effect of antitumor antibodies.


2009 ◽  
Vol 206 (2) ◽  
pp. 399-410 ◽  
Author(s):  
Romina S. Goldszmid ◽  
Isabelle Coppens ◽  
Avital Lev ◽  
Pat Caspar ◽  
Ira Mellman ◽  
...  

Toxoplasma gondii tachyzoites infect host cells by an active invasion process leading to the formation of a specialized compartment, the parasitophorous vacuole (PV). PVs resist fusion with host cell endosomes and lysosomes and are thus distinct from phagosomes. Because the parasite remains sequestered within the PV, it is unclear how T. gondii–derived antigens (Ag’s) access the major histocompatibility complex (MHC) class I pathway for presentation to CD8+ T cells. We demonstrate that recruitment of host endoplasmic reticulum (hER) to the PV in T. gondii–infected dendritic cells (DCs) directly correlates with cross-priming of CD8+ T cells. Furthermore, we document by immunoelectron microscopy the transfer of hER components into the PV, a process indicative of direct fusion between the two compartments. In strong contrast, no association between hER and phagosomes or Ag presentation activity was observed in DCs containing phagocytosed live or dead parasites. Importantly, cross-presentation of parasite-derived Ag in actively infected cells was blocked when hER retrotranslocation was inhibited, indicating that the hER serves as a conduit for the transport of Ag between the PV and host cytosol. Collectively, these findings demonstrate that pathogen-driven hER–PV interaction can serve as an important mechanism for Ag entry into the MHC class I pathway and CD8+ T cell cross-priming.


2015 ◽  
Vol 112 (47) ◽  
pp. 14664-14669 ◽  
Author(s):  
Anand K. Katakam ◽  
Hans Brightbill ◽  
Christian Franci ◽  
Chung Kung ◽  
Victor Nunez ◽  
...  

Dendritic cells (DCs) link innate and adaptive immunity and use a host of innate immune and inflammatory receptors to respond to pathogens and inflammatory stimuli. Although DC maturation via canonical NF-κB signaling is critical for many of these functions, the role of noncanonical NF-κB signaling via the serine/threonine kinase NIK (NF-κB–inducing kinase) remains unclear. Because NIK-deficient mice lack secondary lymphoid organs, we generated transgenic mice with targeted NIK deletion in CD11c+ cells. Although these mice exhibited normal lymphoid organs, they were defective in cross-priming naive CD8+ T cells following vaccination, even in the presence of anti-CD40 or polyinosinic:polycytidylic acid to induce DC maturation. This impairment reflected two intrinsic defects observed in splenic CD8+ DCs in vitro, namely antigen cross-presentation to CD8+ T cells and secretion of IL-12p40, a cytokine known to promote cross-priming in vivo. In contrast, antigen presentation to CD4+ T cells was not affected. These findings reveal that NIK, and thus probably the noncanonical NF-κB pathway, is critical to allow DCs to acquire the capacity to cross-present antigen and prime CD8 T cells after exposure to licensing stimuli, such as an agonistic anti-CD40 antibody or Toll-like receptor 3 ligand.


Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4240-4242 ◽  
Author(s):  
Tobias R. Kollmann ◽  
Sing Sing Way ◽  
Heidi L. Harowicz ◽  
Adeline M. Hajjar ◽  
Christopher B. Wilson

Abstract Neonates respond suboptimally to many vaccines. The reasons for this defect are unclear, but suboptimal antigen presentation by dendritic cells has been suggested as one possibility. In this report we describe an in vitro system that allows the generation of large numbers of resting murine neonatal dendritic cells facilitating their study. Using this system, we show a clear reduction in the ability of neonatal dendritic cells to present soluble ovalbumin, while the capacity to present ovalbumin peptide is intact. This suggests a specific defect in cross-presentation of exogenous antigen via the major histocompatibility complex (MHC) class I pathway. Deficient cross-presentation may contribute to the suboptimal CD8 T-cell response to vaccines in neonates. (Blood. 2004;103:4240-4242)


Sign in / Sign up

Export Citation Format

Share Document