scholarly journals Potent anti-SARS-CoV-2 Antibody Responses are Associated with Better Prognosis in Hospital Inpatient COVID-19 Disease

Author(s):  
Patrick J Tighe ◽  
Richard A Urbanowicz ◽  
Lucy Fairclough ◽  
C Patrick McClure ◽  
Brian J Thomson ◽  
...  

COVID-19 continues to cause a pandemic, having infected more than 20 million people globally. Successful elimination of the SARS-CoV-2 virus will require an effective vaccine. However, the immune correlates of infection are currently poorly understood. While neutralizing antibodies are believed to be essential for protection against infection, the contribution of the neutralizing antibody response to resolution of SARS-CoV-2 infection has not yet been defined. In this study the antibody responses to the SARS-CoV-2 spike protein and nucleocapsid proteins were investigated in a UK patient cohort, using optimised immunoassays and a retrovirus-based pseudotype entry assay. It was discovered that in severe COVID-19 infections an early antibody response to both antigens was associated with improved prognosis of infection. While not all SARS-CoV-2-reactive sera were found to possess neutralizing antibodies, neutralizing potency of sera was found to be greater in patients who went on to resolve infection, compared with those that died from COVID-19. Furthermore, viral genetic variation in spike protein was found to influence the production of neutralizing antibodies. Infection with the recently described spike protein variant 614G produced higher levels of neutralizing antibodies when compared to viruses possessing the 614D variant. These findings support the assertion that vaccines targeting generation of neutralizing antibodies may be useful at limiting SARS-CoV-2 infection. Assessment of the antibody responses to SARS-CoV-2 at time of diagnosis will be a useful addition to the diagnostic toolkit, enabling stratification of clinical intervention for severe COVID-19 disease.

Science ◽  
2020 ◽  
Vol 370 (6521) ◽  
pp. 1227-1230 ◽  
Author(s):  
Ania Wajnberg ◽  
Fatima Amanat ◽  
Adolfo Firpo ◽  
Deena R. Altman ◽  
Mark J. Bailey ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic with millions infected and more than 1 million fatalities. Questions regarding the robustness, functionality, and longevity of the antibody response to the virus remain unanswered. Here, on the basis of a dataset of 30,082 individuals screened at Mount Sinai Health System in New York City, we report that the vast majority of infected individuals with mild-to-moderate COVID-19 experience robust immunoglobulin G antibody responses against the viral spike protein. We also show that titers are relatively stable for at least a period of about 5 months and that anti-spike binding titers significantly correlate with neutralization of authentic SARS-CoV-2. Our data suggest that more than 90% of seroconverters make detectable neutralizing antibody responses. These titers remain relatively stable for several months after infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tybbysay P. Salinas ◽  
Jose L. Garrido ◽  
Jacqueline R. Salazar ◽  
Publio Gonzalez ◽  
Nicole Zambrano ◽  
...  

BackgroundNew World Hantaviruses (NWHs) are the etiological agent underlying hantavirus cardiopulmonary syndrome (HCPS), a severe respiratory disease with high mortality rates in humans. In Panama, infections with Choclo Orthohantavirus (CHOV) cause a much milder illness characterized by higher seroprevalence and lower mortality rates. To date, the cytokine profiles and antibody responses associated with this milder form of HCPS have not been defined. Therefore, in this study, we examined immune serological profiles associated with CHOV infections.MethodsFor this retrospective study, sera from fifteen individuals with acute CHOV-induced HCPS, were analyzed alongside sera from fifteen convalescent phase individuals and thirty-three asymptomatic, CHOV-seropositive individuals. Cytokine profiles were analyzed by multiplex immunoassay. Antibody subclasses, binding, and neutralization against CHOV-glycoprotein (CHOV-GP) were evaluated by ELISA, and flow cytometry.ResultsHigh titers of IFNγ, IL-4, IL-8, and IL-10 serum cytokines were found in the acute individuals. Elevated IL-4 serum levels were found in convalescent and asymptomatic seropositive individuals. High titers of IgG1 subclass were observed across the three cohorts analyzed. Neutralizing antibody response against CHOV-GP was detectable in few acute individuals but was strong in both convalescent and asymptomatic seropositive individuals.ConclusionA Th1/Th2 cytokine signature is characteristic during acute mild HCPS caused by CHOV infection. High expression of Th2 and IL-8 cytokines are correlated with clinical parameters in acute mild HCPS. In addition, a strong IL-4 signature is associated with different cohorts, including asymptomatic individuals. Furthermore, asymptomatic individuals presented high titers of neutralizing antibodies.


2021 ◽  
Author(s):  
Jira Chansaenroj ◽  
Ritthideach Yorsaeng ◽  
Nasamon Wanlapakorn ◽  
Chintana Chirathaworn ◽  
Natthinee Sudhinaraset ◽  
...  

Abstract Understanding antibody responses after natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can guide the coronavirus disease 2019 (COVID-19) vaccine schedule. This study aimed to assess the dynamics of SARS-CoV-2 antibodies, including anti-spike protein 1 (S1) immunoglobulin (Ig)G, anti-receptor-binding domain (RBD) total Ig, anti-S1 IgA, and neutralizing antibody against wild-type SARS-CoV-2 in a cohort of patients who were previously infected with SARS-CoV-2. Between March and May 2020, 531 individuals with virologically confirmed cases of SARS-CoV-2 infection were enrolled in our immunological study. The neutralizing titers against SARS-CoV-2 were detected in 95.2%, 86.7%, 85.0%, and 85.4% of recovered COVID-19 patients at 3, 6, 9, and 12 months after symptom onset, respectively. The seropositivity rate of anti-S1 IgG, anti-RBD total Ig, anti-S1 IgA, and neutralizing titers remained at 68.6%, 89.6%, 77.1%, and 85.4%, respectively, at 12 months after symptom onset. The half-life of neutralizing titers was estimated at 100.7 days (95% confidence interval = 44.5 – 327.4 days, R2 = 0.106). These results support that the decline in serum antibody levels over time depends on the symptom severity, and the individuals with high IgG antibody titers experienced a significantly longer persistence of SARS-CoV-2-specific antibody responses than those with lower titers.


Author(s):  
Nanda Kishore Routhu ◽  
Sailaja Gangadhara ◽  
Narayanaiah Cheedarla ◽  
Ayalnesh Shiferaw ◽  
Sheikh Abdul Rahman ◽  
...  

AbstractThere is a great need for the development of vaccines for preventing SARS-CoV-2 infection and mitigating the COVID-19 pandemic. Here, we developed two modified vaccinia Ankara (MVA) based vaccines which express either a membrane anchored full-length spike protein (MVA/S) stabilized in a prefusion state or the S1 region of the spike (MVA/S1) which forms trimers and is secreted. Both immunogens contained the receptor-binding domain (RBD) which is a known target of antibody-mediated neutralization. Following immunizations with MVA/S or MVA/S1, both spike protein recombinants induced strong IgG antibodies to purified full-length SARS-CoV-2 spike protein. The MVA/S induced a robust antibody response to purified RBD, S1 and S2 whereas MVA/S1 induced an antibody response to the S1 region outside of the RBD region. Both vaccines induced an antibody response in the lung and that was associated with induction of bronchus-associated lymphoid tissue. MVA/S but not MVA/S1 vaccinated mice generated robust neutralizing antibody responses against SARS-CoV-2 that strongly correlated with RBD antibody binding titers. Mechanistically, S1 binding to ACE-2 was strong but reduced following prolonged pre-incubation at room temperature suggesting confirmation changes in RBD with time. These results demonstrate MVA/S is a potential vaccine candidate against SARS-CoV-2 infection.


2017 ◽  
Vol 91 (20) ◽  
Author(s):  
Brian G. Pierce ◽  
Elisabeth N. Boucher ◽  
Kurt H. Piepenbrink ◽  
Monir Ejemel ◽  
Chelsea A. Rapp ◽  
...  

ABSTRACT Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, as well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines. IMPORTANCE Hepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly neutralizing antibodies. In vivo results in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1346
Author(s):  
Jennifer K. DeMarco ◽  
Joshua M. Royal ◽  
William E. Severson ◽  
Jon D. Gabbard ◽  
Steve Hume ◽  
...  

We developed a SARS-CoV-2 vaccine candidate (CoV-RBD121-NP) comprised of a tobacco mosaic virus-like nanoparticle conjugated to the receptor-binding domain of the spike glycoprotein of SARS-CoV-2 fused to a human IgG1 Fc domain. CoV-RBD121-NP elicits strong antibody responses in C57BL/6 mice and is stable for up to 12 months at 2–8 or 22–28 °C. Here, we showed that this vaccine induces a strong neutralizing antibody response in K18-hACE2 mice. Furthermore, we demonstrated that immunization protects mice from virus-associated mortality and symptomatic disease. Our data indicated that a sufficient pre-existing pool of neutralizing antibodies is required to restrict SARS-CoV-2 replication upon exposure and prevent induction of inflammatory mediators associated with severe disease. Finally, we identified a potential role for CXCL5 as a protective cytokine in SARS-CoV-2 infection. Our results suggested that disruption of the CXCL5 and CXCL1/2 axis may be important early components of the inflammatory dysregulation that is characteristic of severe cases of COVID-19.


2021 ◽  
pp. eabi8452
Author(s):  
Craig Fenwick ◽  
Priscilla Turelli ◽  
Céline Pellaton ◽  
Alex Farina ◽  
Jérémy Campos ◽  
...  

The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies in the serum of an individual indicates prior infection or vaccination. However, it provides limited insight into the protective nature of this immune response. Neutralizing antibodies recognizing the viral spike protein are more revealing, yet their measurement traditionally requires virus- and cell-based systems that are costly, time-consuming, inflexible, and potentially biohazardous. Here, we present a cell-free quantitative neutralization assay based on the competitive inhibition of trimeric SARS-CoV-2 spike protein binding to the angiotensin converting enzyme 2 (ACE2) receptor. This high-throughput method matches the performance of the gold standard live virus infection assay, as verified with a panel of 206 seropositive donors with varying degrees of infection severity and virus-specific IgG titers, achieving 96.7% sensitivity and 100% specificity. Furthermore, it allows for the parallel assessment of neutralizing activities against multiple SARS-CoV-2 spike protein variants of concern. We used our assay to profile serum samples from 59 patients hospitalized with coronavirus disease 2019 (COVID-19). We found that, although most sera had high activity against the 2019-nCoV parental spike protein and, to a lesser extent, the α (B.1.1.7) variant, only 58% of serum samples could efficiently neutralize a spike protein derivative containing mutations present in the β (B.1.351) variant. Thus, we have developed an assay that can evaluate effective neutralizing antibody responses to SARS-CoV-2 spike protein variants of concern after natural infection and that can be applied to characterize vaccine-induced antibody responses or to assess the potency of monoclonal antibodies.


2021 ◽  
Vol 9 (7) ◽  
pp. e002673
Author(s):  
Victoria Roulstone ◽  
David Mansfield ◽  
Robert J Harris ◽  
Katie Twigger ◽  
Christine White ◽  
...  

BackgroundOncolytic reovirus therapy for cancer induces a typical antiviral response to this RNA virus, including neutralizing antibodies. Concomitant treatment with cytotoxic chemotherapies has been hypothesized to improve the therapeutic potential of the virus. Chemotherapy side effects can include immunosuppression, which may slow the rate of the antiviral antibody response, as well as potentially make the patient more vulnerable to viral infection.MethodReovirus neutralizing antibody data were aggregated from separate phase I clinical trials of reovirus administered as a single agent or in combination with gemcitabine, docetaxel, carboplatin and paclitaxel doublet or cyclophosphamide. In addition, the kinetics of individual antibody isotypes were profiled in sera collected in these trials.ResultsThese data demonstrate preserved antiviral antibody responses, with only moderately reduced kinetics with some drugs, most notably gemcitabine. All patients ultimately produced an effective neutralizing antibody response.ConclusionPatients’ responses to infection by reovirus are largely unaffected by the concomitant drug treatments tested, providing confidence that RNA viral treatment or infection is compatible with standard of care treatments.


2021 ◽  
Author(s):  
Venkata-Viswanadh Edara ◽  
Kelly E Manning ◽  
Madison Ellis ◽  
Lilin Lai ◽  
Kathryn M Moore ◽  
...  

The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naive vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.


Author(s):  
Benjamin L. Sievers ◽  
Saborni Chakraborty ◽  
Yong Xue ◽  
Terri Gelbart ◽  
Joseph C. Gonzalez ◽  
...  

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that possess mutations associated with increased transmission and antibody escape have arisen over the course of the current pandemic. Although the current vaccines have largely been effective against past variants, the number of mutations found on the Omicron (B.1.1.529) spike protein appear to diminish the protection conferred by pre-existing immunity. Using vesicular stomatitis virus (VSV) pseudoparticles expressing the spike protein of several SARS-CoV-2 variants, we evaluated the magnitude and breadth of the neutralizing antibody response over time in individuals after infection and in mRNA-vaccinated individuals. We observed that boosting increases the magnitude of the antibody response to wildtype (D614), Beta, Delta, and Omicron variants; however, the Omicron variant was the most resistant to neutralization. We further observed that vaccinated healthy adults had robust and broad antibody responses whereas responses may have been reduced in vaccinated pregnant women, underscoring the importance of learning how to maximize mRNA vaccine responses in pregnant populations. Findings from this study show substantial heterogeneity in the magnitude and breadth of responses after infection and mRNA vaccination and may support the addition of more conserved viral antigens to existing SARS-CoV-2 vaccines.


Sign in / Sign up

Export Citation Format

Share Document