scholarly journals Transfer learning to detect COVID-19 automatically from X-ray images, using convolutional neural networks

Author(s):  
Mundher Taresh ◽  
Ningbo Zhu ◽  
Talal Ahmed Ali Ali

AbstractNovel coronavirus pneumonia (COVID-19) is a contagious disease that has already caused thousands of deaths and infected millions of people worldwide. Thus, all technological gadgets that allow the fast detection of COVID-19 infection with high accuracy can offer help to healthcare professionals. This study is purposed to explore the effectiveness of artificial intelligence (AI) in the rapid and reliable detection of COVID-19 based on chest X-ray imaging. In this study, reliable pre-trained deep learning algorithms were applied to achieve the automatic detection of COVID-19-induced pneumonia from digital chest X-ray images.Moreover, the study aims to evaluate the performance of advanced neural architectures proposed for the classification of medical images over recent years. The data set used in the experiments involves 274 COVID-19 cases, 380 viral pneumonia, and 380 healthy cases, which was collected from the available X-ray images on public medical repositories. The confusion matrix provided a basis for testing the post-classification model. Furthermore, an open-source library PyCM* was used to support the statistical parameters. The study revealed the superiority of Model VGG16 over other models applied to conduct this research where the model performed best in terms of overall scores and based-class scores. According to the research results, deep learning with X-ray imaging is useful in the collection of critical biological markers associated with COVID-19 infection. The technique is conducive for the physicians to make a diagnosis of COVID-19 infection. Meanwhile, the high accuracy of this computer-aided diagnostic tool can significantly improve the speed and accuracy of COVID-19 diagnosis.

2020 ◽  
Author(s):  
Hao Quan ◽  
Xiaosong Xu ◽  
Tingting Zheng ◽  
Zhi Li ◽  
Mingfang Zhao ◽  
...  

Abstract Objective: A deep learning framework for detecting COVID-19 is developed, and a small amount of chest X-ray data is used to accurately screen COVID-19.Methods: In this paper, we propose a deep learning framework that integrates convolution neural network and capsule network. DenseNet and CapsNet fusion are used to give full play to their respective advantages, reduce the dependence of convolution neural network on a large amount of data, and can quickly and accurately distinguish COVID-19 from Non-COVID-19 through chest X-ray imaging.Results: A total of 1472 chest X-ray COVID-19 and non-COVID-19 images are used, this method can achieve an accuracy of 99.32% and a precision of 100%, with 98.55% sensitivity and 100% specificity.Conclusion: These results show that the deep fusion neural network DenseCapsNet has good performance in novel coronavirus pneumonia X-ray detection. We also prove through experiments that the detection performance of DenseCapsNet is not affected fundamentally by a lack of data augmentation and pre-training.


Author(s):  
Aditya Sharma ◽  
Arshdeep Singh Chudey ◽  
Mrityunjay Singh

The novel coronavirus (COVID-19), which started in the Wuhan province of China, prompted a major outbreak that culminated in a worldwide pandemic. Several cases are being recorded across the globe, with deaths being close to 2.5 million. The increased number of cases and the newness of such a pandemic has resulted in the hospitals being under-equipped leading to problems in diagnosis of the disease. From previous studies, radiography has proved to be the fastest testing method. A screening test using the x-ray scan of the chest region has proved to be effective. For this method, a trained radiologist is needed to detect the disease. Automating this process using deep learning models can prove to be effective. Due to the lack of large dataset, pre-trained CNN models are used in this study. Several models have been employed like VGG-16, Resnet-50, InceptionV3, and InceptionResnetV2. Resnet-50 provided the best accuracy of 98.3%. The performance evaluation has been done using metrics like receiver operating curve and confusion matrix.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1002
Author(s):  
Mohammad Khishe ◽  
Fabio Caraffini ◽  
Stefan Kuhn

This article proposes a framework that automatically designs classifiers for the early detection of COVID-19 from chest X-ray images. To do this, our approach repeatedly makes use of a heuristic for optimisation to efficiently find the best combination of the hyperparameters of a convolutional deep learning model. The framework starts with optimising a basic convolutional neural network which represents the starting point for the evolution process. Subsequently, at most two additional convolutional layers are added, at a time, to the previous convolutional structure as a result of a further optimisation phase. Each performed phase maximises the the accuracy of the system, thus requiring training and assessment of the new model, which gets gradually deeper, with relevant COVID-19 chest X-ray images. This iterative process ends when no improvement, in terms of accuracy, is recorded. Hence, the proposed method evolves the most performing network with the minimum number of convolutional layers. In this light, we simultaneously achieve high accuracy while minimising the presence of redundant layers to guarantee a fast but reliable model. Our results show that the proposed implementation of such a framework achieves accuracy up to 99.11%, thus being particularly suitable for the early detection of COVID-19.


2020 ◽  
Vol 7 ◽  
Author(s):  
Seung Hoon Yoo ◽  
Hui Geng ◽  
Tin Lok Chiu ◽  
Siu Ki Yu ◽  
Dae Chul Cho ◽  
...  

COVID ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 403-415
Author(s):  
Abeer Badawi ◽  
Khalid Elgazzar

Coronavirus disease (COVID-19) is an illness caused by a novel coronavirus family. One of the practical examinations for COVID-19 is chest radiography. COVID-19 infected patients show abnormalities in chest X-ray images. However, examining the chest X-rays requires a specialist with high experience. Hence, using deep learning techniques in detecting abnormalities in the X-ray images is presented commonly as a potential solution to help diagnose the disease. Numerous research has been reported on COVID-19 chest X-ray classification, but most of the previous studies have been conducted on a small set of COVID-19 X-ray images, which created an imbalanced dataset and affected the performance of the deep learning models. In this paper, we propose several image processing techniques to augment COVID-19 X-ray images to generate a large and diverse dataset to boost the performance of deep learning algorithms in detecting the virus from chest X-rays. We also propose innovative and robust deep learning models, based on DenseNet201, VGG16, and VGG19, to detect COVID-19 from a large set of chest X-ray images. A performance evaluation shows that the proposed models outperform all existing techniques to date. Our models achieved 99.62% on the binary classification and 95.48% on the multi-class classification. Based on these findings, we provide a pathway for researchers to develop enhanced models with a balanced dataset that includes the highest available COVID-19 chest X-ray images. This work is of high interest to healthcare providers, as it helps to better diagnose COVID-19 from chest X-rays in less time with higher accuracy.


2020 ◽  
Author(s):  
Huseyin Yaşar ◽  
Murat Ceylan

Abstract At the end of 2019, a new type of virus, belonging to the coronaviridae family has emerged and it is considered that the virus in question is of zootonic origin. The virus that emerged in China first affected this country and then spread worldwide. Pneumonia develops due to Covid-19 virus in patients having severe disease symptoms. Many literature studies have been carried out in the process where the effects of the disease-induced pneumonia in lungs have been demonstrated with the help of chest X-ray imaging. In this study, which aims at early diagnosis of Covid-19 disease by using X-Ray images, the deep-learning approach, which is a state-of-the-art artificial intelligence method, was used and automatic classification of images was performed using Convolutional Neural Networks (CNN). In the first training-test data set used in the study, there were a total of 230 abnormal and 80 normal X-Ray images, while in the second training-test data set there were 476 X-Ray images, of which 150 abnormal and 326 normal. Thus, classification results have been provided for two data sets, containing predominantly abnormal images and predominantly normal images respectively. In the study, a 23-layer CNN architecture was developed. Within the scope of the study, results were obtained by using chest X-Ray images directly in training-test procedures and the sub-band images obtained by applying Dual Tree Complex Wavelet Transform (DT-CWT) to the above-mentioned images. The same experiments were repeated using images obtained by applying Local Binary Pattern (LBP) to the chest X-Ray images. Within the scope of the study, a new result generation algorithm having been put forward additionally, it was ensured that the experimental results were combined and the success of the study was improved. In the experiments carried out in the study, the trainings were carried out using the k-fold cross validation method. Here the k value was chosen 23. Considering the highest results of the tests performed in the study, values of sensitivity, specificity, accuracy and AUC for the first training-test data set were calculated to be 1, 1, 0,9913 and 0,9996; while for the second data set of training-test, they were 1, 0,9969, 0,9958 and 0,9996 respectively. Considering the average highest results of the experiments performed within the scope of the study, the values of sensitivity, specificity, accuracy and AUC for the first training-test data set were 0,9933, 0,9725, 0,9843 and 0,9988; while for the second training-test data set, they were 0,9813, 0,9908, 0,9857 and 0,9983 respectively.


2021 ◽  
Vol 3 (1) ◽  
pp. 25-28
Author(s):  
Dhian Satria Yudha Kartika ◽  
Anita Wulansari ◽  
Hendra Maulana ◽  
Eristya Maya Safitri ◽  
Faisal Muttaqin

The COVID-19 pandemic has significant impact on people's lives such as economic, social, psychological and health conditions. The health sector, which is spearheading the handling of the outbreak, has conducted a lot of research and trials related to COVID-19. Coughing is a common symptoms among humans affected by COVID-19 in earlier stage. The first step when a patient shows symptoms of COVID-19 was to conduct a chest x-ray imaging. The chest x-rayss can be used as a digital image dataset for analysing  the spread of the virus that enters the lungs or respiratory tract. In this study, 864 x-rays  were used as datasets. The images were still raw, taken directly from Covid-19 patients, so there were still a lot of noise. The process to remove unnecessary images would be carried out in the pre-processing stage. The images used as datasets were not mixed with the background which can reduce the value at the next stage. All datasets were made to have a uniform size and pixels to obtain a standard quality and size in order to support the next stage, namely segmentation. The segmentation stage of the x-ray datasets of Covid-19 patients was carried out using the k-means method and feature extraction. The Confusion Matrix method used as testing process. The accuracy value was 78.5%. The results of this testing process were 78.5% of precision value, 78% of recall and  79% for f-measure


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mundher Mohammed Taresh ◽  
Ningbo Zhu ◽  
Talal Ahmed Ali Ali ◽  
Asaad Shakir Hameed ◽  
Modhi Lafta Mutar

The novel coronavirus disease 2019 (COVID-19) is a contagious disease that has caused thousands of deaths and infected millions worldwide. Thus, various technologies that allow for the fast detection of COVID-19 infections with high accuracy can offer healthcare professionals much-needed help. This study is aimed at evaluating the effectiveness of the state-of-the-art pretrained Convolutional Neural Networks (CNNs) on the automatic diagnosis of COVID-19 from chest X-rays (CXRs). The dataset used in the experiments consists of 1200 CXR images from individuals with COVID-19, 1345 CXR images from individuals with viral pneumonia, and 1341 CXR images from healthy individuals. In this paper, the effectiveness of artificial intelligence (AI) in the rapid and precise identification of COVID-19 from CXR images has been explored based on different pretrained deep learning algorithms and fine-tuned to maximise detection accuracy to identify the best algorithms. The results showed that deep learning with X-ray imaging is useful in collecting critical biological markers associated with COVID-19 infections. VGG16 and MobileNet obtained the highest accuracy of 98.28%. However, VGG16 outperformed all other models in COVID-19 detection with an accuracy, F1 score, precision, specificity, and sensitivity of 98.72%, 97.59%, 96.43%, 98.70%, and 98.78%, respectively. The outstanding performance of these pretrained models can significantly improve the speed and accuracy of COVID-19 diagnosis. However, a larger dataset of COVID-19 X-ray images is required for a more accurate and reliable identification of COVID-19 infections when using deep transfer learning. This would be extremely beneficial in this pandemic when the disease burden and the need for preventive measures are in conflict with the currently available resources.


Author(s):  
Sanhita Basu ◽  
Sushmita Mitra ◽  
Nilanjan Saha

AbstractWith the ever increasing demand for screening millions of prospective “novel coronavirus” or COVID-19 cases, and due to the emergence of high false negatives in the commonly used PCR tests, the necessity for probing an alternative simple screening mechanism of COVID-19 using radiological images (like chest X-Rays) assumes importance. In this scenario, machine learning (ML) and deep learning (DL) offer fast, automated, effective strategies to detect abnormalities and extract key features of the altered lung parenchyma, which may be related to specific signatures of the COVID-19 virus. However, the available COVID-19 datasets are inadequate to train deep neural networks. Therefore, we propose a new concept called domain extension transfer learning (DETL). We employ DETL, with pre-trained deep convolutional neural network, on a related large chest X-Ray dataset that is tuned for classifying between four classes viz. normal, other_disease, pneumonia and Covid — 19. A 5-fold cross validation is performed to estimate the feasibility of using chest X-Rays to diagnose COVID-19. The initial results show promise, with the possibility of replication on bigger and more diverse data sets. The overall accuracy was measured as 95.3% ± 0.02. In order to get an idea about the COVID-19 detection transparency, we employed the concept of Gradient Class Activation Map (Grad-CAM) for detecting the regions where the model paid more attention during the classification. This was found to strongly correlate with clinical findings, as validated by experts.


2021 ◽  
Vol 4 (2) ◽  
pp. 139-143
Author(s):  
Abdullah Ajmal ◽  
Sundas Ibrar ◽  
Wakeel Ahmad ◽  
Syed Muhammad Adnan Shah

Abstract— The Novel Coronavirus generally, knows as COVID-19 which first appeared in Wuhan city of China in December 2019, spread quickly around the world and became a pandemic. It has caused an overwhelming effect on daily lives, Public health, and the global economy. Many people have been affected and have died. It is critical to control and prevent the spread of COVID-19 disease by applying quick alternative diagnostic techniques. COVID-19 cases are rising day by day around the world, the on-time diagnosis of COVID-19 patients is an increasingly long and difficult process. COVID-19 patient test kits are costly and not available for every individual in poor countries. For this purpose, screening patients with the established techniques like Chest X-ray images seems to be an effective method. This study used a deep learning data augmentation on a publicly available data set and train advanced CNN models on it. The proposed model was tested using a state-of-the-art evaluation measures and obtained better results. Our model, the COVID-19 images is available at (https://github.com/ieee8023/covid-chestxray-dataset) and for Non-COVID-19 images is available at (https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia). The maximum accuracy achieved in the validation was 96.67%. Our model of COVID-19 detection achieved an average F measure of 98%, and an Area Under Curve (AUC) of 99%. The results demonstrate that deep learning proved to be an effective and easily deployable approach for COVID-19 detection.


Sign in / Sign up

Export Citation Format

Share Document