scholarly journals DNA methylation in cockroaches is essential in early embryo development and reduces gene expression noise

2020 ◽  
Author(s):  
Alba Ventos-Alfonso ◽  
Guillem Ylla ◽  
Jose-Carlos Montañes ◽  
Xavier Belles

AbstractThe influence of DNA methylation on gene behavior, and its consequent phenotypic effects appear to be very important, but the details are not well understood. Insects offer a diversity of DNA methylation modes, making them an excellent lineage for comparative analyses. However, functional studies have tended to focus on quite specialized holometabolan species, such as wasps, bees, beetles, and flies. Here we have studied DNA methylation in a hemimetabolan insect, the cockroach Blattella germanica, a model of early-branching insects. In this cockroach, one of the main genes responsible for DNA methylation, DNA methyltransferase 1 (DNMT1), is expressed in early embryogenesis. In our experiments, DNMT1 interference by RNAi reduces DNA methylation and impairs blastoderm formation. Using Reduced Representation Bisulfite Sequencing (RRBS) and transcriptomic analyses, we observed that hypermethylated genes are associated with metabolism and are highly expressed, whereas hypomethylated genes are related to signaling and have low expression levels. Moreover, the expression change in hypermethylated genes is greter than that in hypomethylated genes, whereas hypermethylated genes have less expression variability than hypomethylated genes. The latter observation has also been reported for humans and in Arabidopsis plants. A reduction in expression noise may therefore be one of the few universal effects of DNA methylation.

2009 ◽  
Vol 21 (9) ◽  
pp. 43
Author(s):  
Y. Li ◽  
H. D. Morgan ◽  
L. Ganeshan ◽  
C. O'Neill

In an accompanying abstract we show for the first time that global demethylation of both paternally- and maternally-derived genomes occurs prior to syngamy. It is commonly considered that new methylation of the genome does not commence until late in the preimplantation stage. Yet embryos during cleavage stage are known to show DNA methylation. This creates a paradox, if global demethylation occurs by the time of syngamy yet remethylation does not occur until the blastocysts stage, how can cleavage stage embryos possess methylated DNA. We examined this paradox. We examined DNA methylation in 2-cell embryos by confocal microscopy of anti-methylcytosine immunofluorescence and propidium iodide co-staining of whole mounts. We confirmed that DNA in late zygotes was substantially demethylated in both the male and female pronuclei. By the 2-cell stage, embryos collected direct from the oviduct showed high levels of cytosine methylation. We assessed whether this accumulation of cytosine methylation during the early 2-cell stage was a consequence of DNA methyltransferase (DNMT) activity. This was achieved by treating late stage zygotes with the DNMT inhibitor RG108 (5 μM) for the period of development spanning pronuclear stage 5 to early 2-cell stage. The embryos that developed in the presence of the DNA methyltransferase inhibitor showed significantly less methylcytosine staining than the embryos in the untreated culture conditions (P<0.001). Treatment of embryos during this period with RG108 significantly reduced their capacity to develop to normal blastocysts, indicating that this early DNA re-methylation reaction was important for the normal development of the embryo. Our results show for the first time that de novo methylation of the genome occurs as early as the 2-cell stage of development and that this is mediated by a RG108-sensitive DNMT activity. The results substantially change our understanding of epigenetic reprogramming in the early embryo.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
H. Martin Kramer ◽  
David E. Cook ◽  
Grardy C. M. van den Berg ◽  
Michael F. Seidl ◽  
Bart P. H. J. Thomma

Abstract Background DNA methylation is an important epigenetic control mechanism that in many fungi is restricted to genomic regions containing transposable elements (TEs). Two DNA methyltransferases, Dim2 and Dnmt5, are known to perform methylation at cytosines in fungi. While most ascomycete fungi encode both Dim2 and Dnmt5, only few functional studies have been performed in species containing both. Methods In this study, we report functional analysis of both Dim2 and Dnmt5 in the plant pathogenic fungus Verticillium dahliae. Results Our results show that Dim2, but not Dnmt5 or the putative sexual-cycle-related DNA methyltransferase Rid, is responsible for the majority of DNA methylation under the tested conditions. Single or double DNA methyltransferase mutants did not show altered development, virulence, or transcription of genes or TEs. In contrast, Hp1 and Dim5 mutants that are impacted in chromatin-associated processes upstream of DNA methylation are severely affected in development and virulence and display transcriptional reprogramming in specific hypervariable genomic regions (so-called adaptive genomic regions) that contain genes associated with host colonization. As these adaptive genomic regions are largely devoid of DNA methylation and of Hp1- and Dim5-associated heterochromatin, the differential transcription is likely caused by pleiotropic effects rather than by differential DNA methylation. Conclusion Overall, our study suggests that Dim2 is the main DNA methyltransferase in V. dahliae and, in conjunction with work on other fungi, is likely the main active DNMT in ascomycetes, irrespective of Dnmt5 presence. We speculate that Dnmt5 and Rid act under specific, presently enigmatic, conditions or, alternatively, act in DNA-associated processes other than DNA methylation.


2020 ◽  
Author(s):  
Martin Kramer ◽  
David Cook ◽  
Grardy van den Berg ◽  
Michael Seidl ◽  
Bart Thomma

Abstract Background: DNA methylation is an important epigenetic control mechanism that in many fungi is restricted to genomic regions containing transposons. Two DNA methyltransferases, Dim2 and Dnmt5, are known to perform methylation at cytosines in fungi. While most ascomycete fungi encode both Dim2 and Dnmt5, only few functional studies have been performed in species containing both. Methods: In this study, we report functional analysis of both Dim2 and Dnmt5 in the plant pathogenic fungus Verticillium dahliae. Results: Our results show that Dim2, but not Dnmt5 or the putative sexual-cycle related DNA methyltransferase Rid, is responsible for nearly all DNA methylation. Single or double DNA methyltransferase mutants did not show altered development, virulence, or transcription of genes or transposons. In contrast, Hp1 and Dim5 mutants that are impacted in chromatin-associated processes upstream of DNA methylation are severely affected in development and virulence and display extensive transcriptional reprogramming in specific hypervariable genomic regions (so-called lineage-specific (LS) regions) that contain genes associated with host colonization. As these LS regions are largely devoid of DNA methylation and of Hp1- and Dim5-associated heterochromatin, the differential transcription is likely caused by pleiotropic effects rather than by differential DNA methylation. Conclusion: Overall, our study suggests that Dim2 is the main DNA methyltransferase in V. dahliae and, in conjunction with work on other fungi, is likely the main active DNMT in ascomycetes, irrespective of Dnmt5 presence. We speculate that Dnmt5 acts under specific, presently enigmatic, conditions or, alternatively, acts in DNA-associated processes other than DNA methylation.


2018 ◽  
Author(s):  
Ramya T. Kolli ◽  
Travis C. Glenn ◽  
Bradley T. Brown ◽  
Lillie M. Barnett ◽  
Lawrence H. Lash ◽  
...  

AbstractNext-generation sequencing (NGS) methods are widely available to assess methylation of whole-genomes, reduced representation of genomes, and target capture of many loci, but simple, flexible, and low-cost methods are needed to leverage NGS for sequencing single-locus amplicons from large numbers of samples. We developed a two-stage PCR approach, targeted gene bisulfite sequencing (TGBS) which uses the Illumina MiSeq and Bismark bisulfite mapper, to assess site specific changes in methylation of the cyclin-dependent kinase inhibitor p21 (CDKN1a) after exposure to a DNA methyltransferase inhibitor, 5-aza-2’-deoxycytidine (5-Aza) and determine the differences between human and rat p21 methylation. TGBS analysis of human embryonic kidney cells (HEK293) and human proximal tubular cells (hPT) demonstrated variation at a known methylation sensitive site (SIE-1), but not in rat kidney cells. Treatment of cells with 5-Aza altered the methylation of this site in correlation with increased p21 protein expression. We also found that human and rat p21 promoter sequences differ considerably in the amount of basal DNA methylation. These data showed the utility of TGBS for rapid analysis of DNA methylation of specific loci. We provide links to a ready-to-run Virtualbox that includes the program and commands for methylation analysis of bisulfite datasets, including step-by-step directions.


Author(s):  
H. Martin Kramer ◽  
David E. Cook ◽  
Grardy C.M. van den Berg ◽  
Michael F. Seidl ◽  
Bart P.H.J. Thomma

ABSTRACTDNA methylation is an important epigenetic control mechanism that in many fungi is restricted to genomic regions containing transposons. Two DNA methyltransferases, Dim2 and Dnmt5, are known to perform methylation at cytosines in fungi. While most ascomycete fungi encode both Dim2 and Dnmt5, only few functional studies have been performed in species containing both. In this study, we report functional analysis of both Dim2 and Dnmt5 in the plant pathogenic fungus Verticillium dahliae. Our results show that Dim2, but not Dnmt5 or the putative sexual-cycle related DNA methyltransferase Rid, is responsible for nearly all DNA methylation. Single or double DNA methyltransferase mutants did not show altered development, virulence, or transcription of genes or transposons. In contrast, Hp1 and Dim5 mutants that are impacted in chromatin-associated processes upstream of DNA methylation are severely affected in development and virulence and display extensive transcriptional reprogramming in specific hypervariable genomic regions (so-called lineage-specific (LS) regions) that contain genes associated with host colonization. As these LS regions are largely devoid of DNA methylation and of Hp1- and Dim5-associated heterochromatin, the differential transcription is likely caused by pleiotropic effects rather than by differential DNA methylation. Overall, our study suggests that Dim2 is the main DNA methyltransferase in V. dahliae and, in conjunction with work on other fungi, is likely the main active DNMT in ascomycetes, irrespective of Dnmt5 presence. We speculate that Dnmt5 acts under specific, presently enigmatic, conditions or, alternatively, acts in DNA-associated processes other than DNA methylation.


2016 ◽  
Author(s):  
Adam J. Bewick ◽  
Kevin J. Vogel ◽  
Allen J. Moore ◽  
Robert J. Schmitz

ABSTRACTDNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of flexible traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. Furthermore, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among insects. We also predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary dependency between sociality and DNA methylation. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some hymenopteran, and paralogs have experienced divergent, non-neutral evolution. This diversity and non-neutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Altogether, DNA methylation is highly variable in insects and is not a universal driver of social behavior. Future, functional studies are required to advance our understanding of DNA methylation in insects.


2015 ◽  
Vol 35 (3) ◽  
pp. 1178-1187 ◽  
Author(s):  
Junqiang Zhang ◽  
Ying Wang ◽  
Xiaoguang Liu ◽  
Shenglin Jiang ◽  
Chun Zhao ◽  
...  

Background/Aims: MicroRNA-29b (miR29b) has been previously identified in early mouse embryos through miRNA microarray analysis. Recent research has indicated that miR29b participates in DNA methylation by regulating DNA methyltransferase 3a/3b (Dnmt3a/3b) expression. However, the expression pattern and biological function of miR29b in mouse preimplantation embryonic development remain unknown. Methods: In this study, we examined the expression patterns of miR29b and Dnmt3a/3b in mouse early embryos at different developmental stages. Subsequently, expression and localization of DNMT3A/3B protein was analyzed in mouse early embryos by immunofluorescence staining. The biological function of miR29b in mouse early embryos was analyzed by microinjection of commercially available miRNA-specific inhibitors and mimics. Results: Our data showed that Dnmt3a/3b mRNA expression is negatively regulated by miR29b in mouse early embryos. Immunofluorescence analysis revealed that DNMT3A/3B protein expression is predominantly localized within the nucleoplasm of embryos. Alterations to the activity of miR29b could change the DNA methylation levels in mouse preimplantation embryos and lead to a developmental blockade, from the morula to the blastocyst stage. Conclusion: These results indicated a role for the miR29b-Dnmt3a/3b-DNA methylation axis in mouse early embryonic development, and we provide evidence that miR29b is indispensable for mouse early embryonic development. This study contributes to a preliminary understanding of the role of miR29b during mouse embryonic development.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Liliana Burlibaşa ◽  
Alina-Teodora Nicu ◽  
Carmen Domnariu

Summary The process of cytodifferentiation in spermatogenesis is governed by a unique genetic and molecular programme. In this context, accurate ‘tuning’ of the regulatory mechanisms involved in germ cells differentiation is required, as any error could have dramatic consequences on species survival and maintenance. To study the processes that govern the spatial–temporal expression of genes, as well as analyse transmission of epigenetic information to descendants, an integrated approach of genetics, biochemistry and cytology data is necessary. As information in the literature on interplay between DNA methylation and histone H3 lysine 4 trimethylation (H3K4me3) in the advanced stages of murine spermatogenesis is still scarce, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine, at the cytological level using immunocytochemistry methodology. Our results revealed a particular distribution of H3K4me3 during sperm cell differentiation and highlighted an important role for regulation of DNA methylation in controlling histone methylation and chromatin remodelling during spermatogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Ślaska-Kiss ◽  
Nikolett Zsibrita ◽  
Mihály Koncz ◽  
Pál Albert ◽  
Ákos Csábrádi ◽  
...  

AbstractTargeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity. One of the approaches proposed to suppress methylation at unwanted sites is to use MTase variants with reduced DNA binding affinity. In this work we investigated how methylation specificity of chimeric MTases containing variants of the CG-specific prokaryotic MTase M.SssI fused to zinc finger or dCas9 targeting domains is influenced by mutations affecting catalytic activity and/or DNA binding affinity of the MTase domain. Specificity of targeted DNA methylation was assayed in E. coli harboring a plasmid with the target site. Digestions of the isolated plasmids with methylation sensitive restriction enzymes revealed that specificity of targeted DNA methylation was dependent on the activity but not on the DNA binding affinity of the MTase. These results have implications for the design of strategies of targeted DNA methylation.


Sign in / Sign up

Export Citation Format

Share Document