DNA methyltransferase inhibitors modulate histone methylation: epigenetic crosstalk between H3K4me3 and DNA methylation during sperm differentiation

Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Liliana Burlibaşa ◽  
Alina-Teodora Nicu ◽  
Carmen Domnariu

Summary The process of cytodifferentiation in spermatogenesis is governed by a unique genetic and molecular programme. In this context, accurate ‘tuning’ of the regulatory mechanisms involved in germ cells differentiation is required, as any error could have dramatic consequences on species survival and maintenance. To study the processes that govern the spatial–temporal expression of genes, as well as analyse transmission of epigenetic information to descendants, an integrated approach of genetics, biochemistry and cytology data is necessary. As information in the literature on interplay between DNA methylation and histone H3 lysine 4 trimethylation (H3K4me3) in the advanced stages of murine spermatogenesis is still scarce, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine, at the cytological level using immunocytochemistry methodology. Our results revealed a particular distribution of H3K4me3 during sperm cell differentiation and highlighted an important role for regulation of DNA methylation in controlling histone methylation and chromatin remodelling during spermatogenesis.

2015 ◽  
Vol 28 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Amanda Juliana Sales ◽  
Sâmia Regiane Lourenço Joca

ObjectiveStress increases DNA methylation and decreases the expression of genes involved in neural plasticity, while treatment with DNA methyltransferase inhibitors (DNMTi) increases gene expression and induces antidepressant-like effects in preclinical models. Therefore, the aim of the present work was to further investigate the potential antidepressant-like effect induced by DNMTi by evaluating the behavioural effects induced by associating DNMTi treatment with conventional antidepressant drugs in mice submitted to the forced swimming test (FST). In addition, brain levels of DNA methylation were also investigated.MethodsMice received systemic injections of 5-aza-2'-deoxycytidine (5-AzaD, 0.1, 0.2 mg/kg), RG108 (0.1, 0.2, 0.4 mg/kg), desipramine (DES, 2.5, 5, 10 mg/kg) or fluoxetine (FLX, 5, 10, 20, 30 mg/kg) and were submitted to the FST or to the open field test (OFT). Additional groups received a combination of subeffective doses of 5-AzaD or RG108 (DNMTi) with subeffective doses of DES or FLX (antidepressants).ResultsSubeffective doses of RG108 (0.1 mg/kg) or 5-AzaD (0.1mg/kg) in association with subeffective doses of DES (2.5 mg/kg) or FLX (10 mg/kg) induced significant antidepressant-like effects. Effective doses of RG108 (0.2 mg/kg), 5-AzaD (0.2 mg/kg), DES (10 mg/kg) and FLX (20 mg/kg) atenuated stress-induced changes in DNA methylation levels in the hippocampus and prefrontal cortex. None of the treatments induced locomotor effects in the OFT.ConclusionThese results suggest that DNMTi potentiate the behavioural effects of antidepressant drugs in the FST and that antidepressants, as well as DNMTi, are able to modulate stress-induced changes in DNA methylation in brain regions closely associated with the neurobiology of depression.


2019 ◽  
Vol 20 (16) ◽  
pp. 1151-1157 ◽  
Author(s):  
Jia Yu ◽  
Jacqueline Zayas ◽  
Bo Qin ◽  
Liewei Wang

Triple-negative breast cancer (TNBC) accounts for 15–20% of all invasive breast cancers and tends to have aggressive histological features and poor clinical outcomes. Unlike, estrogen receptor- or HER2-positive diseases, TNBC patients currently lack the US FDA-approved targeted therapies. DNA methylation is a critical mechanism of epigenetic modification. It is well known that aberrant DNA methylation contributes to the malignant transformation of cells by silencing critical tumor suppressor genes. DNA methyltransferase inhibitors reactivate silenced tumor suppressor genes and result in tumor growth arrest, with therapeutic effects observed in patients with hematologic malignancies. The antitumor effect of these DNA methyltransferase inhibitors has also been explored in solid tumors, especially in TNBC that currently lacks targeted therapies.


2019 ◽  
Vol 31 (3) ◽  
pp. 509 ◽  
Author(s):  
Minli Yu ◽  
Dongfeng Li ◽  
Wanyan Cao ◽  
Xiaolu Chen ◽  
Wenxing Du

Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.


2006 ◽  
Vol 4 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Steven D. Gore

The clinical activity of the DNA methyltransferase inhibitors 5-azacitidine and 2′-deoxy-5-azacytidine in myelodysplastic syndromes (MDS) suggests that epigenetic modulation of gene transcription may play an important pathogenetic role in the development and expression of these diseases. Approximately 50% of patients treated with these compounds experience hematologic improvement, making these the most active single agents for unselected patients with MDS. Responses include complete and partial hematologic responses. Two randomized trials have shown that the use of these drugs significantly alters the natural history of MDS compared with supportive care. Histone deacetylase inhibitors, which may also impact the expression of genes through epigenetic mechanisms, seem to have measurable activity in MDS in preliminary studies. Histone deacetylase inhibitors are most likely used in combination with other agents, including DNA methyltransferase inhibitors. Despite the clinical activity of these classes of drugs, there is no conclusive evidence that their clinical activity is attributable to their impact on the epigenome. Such information will be critical in the development of more effective congeners and drug combinations in ongoing attempts to improve the outcome of patients with MDS.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2117-2117 ◽  
Author(s):  
Maria E. Figueroa ◽  
Bas J. Wouters ◽  
Yushan Li ◽  
Peter Valk ◽  
Bob Lowenberg ◽  
...  

Abstract Acute Myeloid Leukemia (AML) is a heterogeneous disease from the molecular and biological standpoints. In order to resolve some of this complexity, a recent microarray-based expression profiling study segregated cohorts of patients with common gene signatures. One of these signatures was associated with alterations of the CCAAT/enhancer-binding protein alpha (CEBPA) gene. Among these patients, a subset harbored CEBPA mutations, while the remainder failed to express CEBPA, which in a number of cases correlated with hypermethylation of its promoter. This latter subgroup of leukemias with silenced CEBPA presented with significant biological differences compared to CEBPA mutant patients, including expression of T-cell markers and activating mutations of NOTCH1 (Wouters BJ et. al., PMID:17671232). Since our preliminary data show that DNA methylation profiling is extremely accurate in identifying distinct biological phenotypes in AML and other tumors, we wondered whether genome-wide epigenetic analysis would identify the biological difference between these patients. In order to determine the DNA methylation profiles of these patients we performed HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR), a quantitative genome-wide DNA methylation method, using a 400,000 feature cutom-desinged microarray, representing 24,000 gene promoters with 50-mer oligonucleotides. We studied the complete previously identified cluster of AML cases presenting with a CEBPA expression signature, and compared and contrasted the DNA methylation profiles of cases carrying the CEBPA mutation and those presenting with CEBPA silencing. Remarkably, unsupervised (unbiased) clustering of DNA methylation profiles revealed that samples were readily segregated into two groups that overlapped perfectly with the presence or absence of the CEBPA mutation, indicating the presence of underlying genome-wide DNA methylation differences between these two groups. We next performed supervised analysis of the samples to compare the DNA methylation profiles of CEBPA mutated vs. CEBPA non-mutated samples. The analysis was performed using a moderated T test, and 291 genes promoters were identified as differentially methylated between the two groups at a significance level of p <0.001. Within this differentially methylated signature, we detected a clear predominance (90%) of hypermethylated genes in the CEBPA silenced group. The critical importance of CEBPA loss of function in mediating the phenotype of these tumors was underlined by the fact that multiple other members of the CEBPA network were likewise hypermethylated. Other than the CEBPA network, the two other most hypermethylated biological pathways involved p38MAPK signaling and PDGF/LCK signaling. Thus, we conclude i) that hypermethylation of the CEBPA promoter is not an isolated event, but rather part of a more widespread epigenetic regulation, and ii) that the original CEBPA signature group is composed of two distinct subgroups originating through two distinct mechanisms, a genetic one and an epigenetic one. The significance of these findings may be supported by the fact that the hypermethylated cohort of patients tended to show a worse prognosis than CEBPA mutant patients. These patients might be good candidates for DNA methyltransferase inhibitors in prospective clinical trials.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1088
Author(s):  
Sung-Il Lee ◽  
Jae Wan Park ◽  
Soon-Jae Kwon ◽  
Yeong Deuk Jo ◽  
Min Jeong Hong ◽  
...  

DNA methylation plays important roles in the regulation of gene expression and maintenance of genome stability in many organisms, including plants. In this study, we treated rice with gamma rays (GRs) and DNA methyltransferase inhibitors (DNMTis) to induce variations in DNA methylation and evaluated epigenetic diversity using methylation-sensitive amplified polymorphism (MSAP) and transposon methylation display (TMD) marker systems. Comparative and integrated analyses of the data revealed that both GRs and DNMTis alone have epimutagenic effects and that combined treatment enhanced these effects. Calculation of methylation rates based on band scoring suggested that both GRs and DNMTis induce epigenetic diversity by demethylation in a dose-dependent manner, and combined treatment can induce variations more synergistically. The difference in the changes in full and hemi-methylation rates between MSAP and TMD is presumed to be caused by the different genomic contexts of the loci amplified in the two marker systems. Principal coordinate, phylogenic, and population structure analyses commonly yielded two clusters of individuals divided by DNMTi treatment. The clustering pattern was more apparent in TMD, indicating that DNMTis have a stronger effect on hypermethylated repetitive regions. These findings provide a foundation for understanding epigenetic variations induced by GRs and DNMTis and for epigenetic mutation breeding.


2006 ◽  
Vol 26 (19) ◽  
pp. 7077-7085 ◽  
Author(s):  
Kunal Rai ◽  
Lincoln D. Nadauld ◽  
Stephanie Chidester ◽  
Elizabeth J. Manos ◽  
Smitha R. James ◽  
...  

ABSTRACT DNA methylation and histone methylation are two key epigenetic modifications that help govern heterochromatin dynamics. The roles for these chromatin-modifying activities in directing tissue-specific development remain largely unknown. To address this issue, we examined the roles of DNA methyltransferase 1 (Dnmt1) and the H3K9 histone methyltransferase Suv39h1 in zebra fish development. Knockdown of Dnmt1 in zebra fish embryos caused defects in terminal differentiation of the intestine, exocrine pancreas, and retina. Interestingly, not all tissues required Dnmt1, as differentiation of the liver and endocrine pancreas appeared normal. Proper differentiation depended on Dnmt1 catalytic activity, as Dnmt1 morphants could be rescued by active zebra fish or human DNMT1 but not by catalytically inactive derivatives. Dnmt1 morphants exhibited dramatic reductions of both genomic cytosine methylation and genome-wide H3K9 trimethyl levels, leading us to investigate the overlap of in vivo functions of Dnmt1 and Suv39h1. Embryos lacking Suv39h1 had organ-specific terminal differentiation defects that produced largely phenocopies of Dnmt1 morphants but retained wild-type levels of DNA methylation. Remarkably, suv39h1 overexpression rescued markers of terminal differentiation in Dnmt1 morphants. Our results suggest that Dnmt1 activity helps direct histone methylation by Suv39h1 and that, together, Dnmt1 and Suv39h1 help guide the terminal differentiation of particular tissues.


2021 ◽  
Vol 118 (23) ◽  
pp. e2125016118
Author(s):  
Basudev Ghoshal ◽  
Colette L. Picard ◽  
Brandon Vong ◽  
Suhua Feng ◽  
Steven E. Jacobsen

CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research.


2012 ◽  
Vol 18 (3) ◽  
pp. 348-355 ◽  
Author(s):  
Marlinda Hupkes ◽  
Rita Azevedo ◽  
Hans Jansen ◽  
Everardus J. van Zoelen ◽  
Koen J. Dechering

DNA methylation is an important epigenetic regulator of gene expression. Abnormalities in DNA methylation patterns have been associated with various developmental and proliferative diseases, particularly cancer. Targeting DNA methyltransferases (DNMTs) represents a promising strategy for the treatment of such diseases. Current DNMT inhibitors suffer important drawbacks with respect to their efficacy, specificity, and toxicity. In this study, we have set up a robust in vitro bacterial M.SssI DNMT activity assay to systematically screen a collection of 26 240 compounds that were predicted to compete with the S-adenosyl-L-methionine (SAM) substrate of DNMT. This resulted in the identification of a novel set of structurally distinct inhibitors of M.SssI DNMT activity. Although molecular docking studies using an M.SssI homology model suggest that these compounds might compete with SAM binding, mode of activity (MoA) assays are still needed to confirm this hypothesis. Our set of novel M.SssI DNMT inhibitors, once confirmed in an orthogonal DNMT assay, may thus serve as a starting point to identify and characterize suitable lead candidates for further drug optimization.


2019 ◽  
Vol 18 (28) ◽  
pp. 2448-2457 ◽  
Author(s):  
Zehao Zhou ◽  
Huan-Qiu Li ◽  
Feng Liu

Aberrant DNA methylation at the 5-position of cytosine, catalyzed by DNA methyltransferases (DNMTs), is associated with not only various cancers by silencing of tumor suppressor genes but also other diseases. The DNMTs, especially the DNMT1, DNMT3A and DNMT3B, are often overexpressed in various cancer tissues and cell lines. DNMTs are important epigenetic targets for drug development since the DNA methylation is reversible. This review summarizes an array of nucleoside and non-nucleoside inhibitors of DNMTs, as well as their biological activities. Among these inhibitors, the nucleoside analogue azacytidine and its deoxy derivative decitabine are both irreversible DNMT inhibitors and approved for the treatment of myelodysplastic syndrome.


Sign in / Sign up

Export Citation Format

Share Document