scholarly journals Probing neuronal functions with precise and targeted laser ablation in the living cortex

2020 ◽  
Author(s):  
Zongyue Cheng ◽  
Yiyong Han ◽  
Bowen Wei ◽  
Baoming Li ◽  
Meng Cui ◽  
...  

AbstractTargeted cell ablation is an important strategy for dissecting the function of individual cells within biological tissues. Here we developed an amplified femtosecond laser-coupled two-photon microscopy (AFL-TPM) system that allows instantaneous and targeted ablation of individual cells and real-time monitoring of neuronal network changes in the living mouse cortex. Through precise and iterative control of the laser power and position, individual cells could be ablated by a single femtosecond light pulse with minimum collateral damage. We further show that ablation of individual somatostatin-expressing interneuron increases the activity of nearby neurons in the primary motor cortex during motor learning. Through precise dendrotomy, we reveal that different dendritic branches of layer 5 pyramidal neurons are structurally and functionally independent. By ablating individual cells and their processes in a spatiotemporally specific manner, the AFL-TPM system could serve as an important means for understanding the functions of cells within the complicated neuronal network.

2011 ◽  
Vol 115 (4) ◽  
pp. 718-726 ◽  
Author(s):  
Guang Yang ◽  
Paul C. Chang ◽  
Alex Bekker ◽  
Thomas J.J. Blanck ◽  
Wen-Biao Gan

Background Anesthetics are widely used to induce unconsciousness, pain relief, and immobility during surgery. It remains unclear whether the use of anesthetics has significant and long-lasting effects on synapse development and plasticity in the brain. To address this question, the authors examined the formation and elimination of dendritic spines, postsynaptic sites of excitatory synapses, in the developing mouse cortex during and after anesthetics exposure. Methods Transgenic mice expressing yellow fluorescence protein in layer 5 pyramidal neurons were used in this study. Mice at 1 month of age underwent ketamine-xylazine and isoflurane anesthesia over a period of hours. The elimination and formation rates of dendritic spines and filopodia, the precursors of spines, were followed over hours to days in the primary somatosensory cortex using transcranial two-photon microscopy. Four to five animals were examined under each experimental condition. Student t test and Mann-Whitney U test were used to analyze the data. Results Administration of either ketamine-xylazine or isoflurane rapidly altered dendritic filopodial dynamics but had no significant effects on spine dynamics. Ketamine-xylazine increased filopodial formation whereas isoflurane decreased filopodial elimination during 4 h of anesthesia. Both effects were transient and disappeared within a day after the animals woke up. Conclusion Studies suggest that exposure to anesthetics transiently affects the dynamics of dendritic filopodia but has no significant effect on dendritic spine development and plasticity in the cortex of 1-month-old mice.


2021 ◽  
Vol 118 (50) ◽  
pp. e2114856118
Author(s):  
Avital Adler ◽  
Cora Sau Wan Lai ◽  
Guang Yang ◽  
Erez Geron ◽  
Yang Bai ◽  
...  

Changes in synaptic connections are believed to underlie long-term memory storage. Previous studies have suggested that sleep is important for synapse formation after learning, but how sleep is involved in the process of synapse formation remains unclear. To address this question, we used transcranial two-photon microscopy to investigate the effect of postlearning sleep on the location of newly formed dendritic filopodia and spines of layer 5 pyramidal neurons in the primary motor cortex of adolescent mice. We found that newly formed filopodia and spines were partially clustered with existing spines along individual dendritic segments 24 h after motor training. Notably, posttraining sleep was critical for promoting the formation of dendritic filopodia and spines clustered with existing spines within 8 h. A fraction of these filopodia was converted into new spines and contributed to clustered spine formation 24 h after motor training. This sleep-dependent spine formation via filopodia was different from retraining-induced new spine formation, which emerged from dendritic shafts without prior presence of filopodia. Furthermore, sleep-dependent new filopodia and spines tended to be formed away from existing spines that were active at the time of motor training. Taken together, these findings reveal a role of postlearning sleep in regulating the number and location of new synapses via promoting filopodial formation.


2013 ◽  
Vol 34 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Kazuto Masamoto ◽  
Hiroyuki Takuwa ◽  
Chie Seki ◽  
Junko Taniguchi ◽  
Yoshiaki Itoh ◽  
...  

The present study aimed to determine the spatiotemporal dynamics of microvascular and astrocytic adaptation during hypoxia-induced cerebral angiogenesis. Adult C57BL/6J and Tie2-green fluorescent protein (GFP) mice with vascular endothelial cells expressing GFP were exposed to normobaric hypoxia for 3 weeks, whereas the three-dimensional microvessels and astrocytes were imaged repeatedly using two-photon microscopy. After 7 to14 days of hypoxia, a vessel sprout appeared from the capillaries with a bump-like head shape (mean diameter 14  μm), and stagnant blood cells were seen inside the sprout. However, no detectable changes in the astrocyte morphology were observed for this early phase of the hypoxia adaptation. More than 50% of the sprouts emerged from capillaries 60  μm away from the center penetrating arteries, which indicates that the capillary distant from the penetrating arteries is a favored site for sprouting. After 14 to 21 days of hypoxia, the sprouting vessels created a new connection with an existing capillary. In this phase, the shape of the new vessel and its blood flow were normalized, and the outside of the vessels were wrapped with numerous processes from the neighboring astrocytes. The findings indicate that hypoxia-induced cerebral angiogenesis provokes the adaptation of neighboring astrocytes, which may stabilize the blood–brain barrier in immature vessels.


2016 ◽  
Vol 116 (3) ◽  
pp. 1261-1274 ◽  
Author(s):  
Amanda K. Kinnischtzke ◽  
Erika E. Fanselow ◽  
Daniel J. Simons

The functional role of input from the primary motor cortex (M1) to primary somatosensory cortex (S1) is unclear; one key to understanding this pathway may lie in elucidating the cell-type specific microcircuits that connect S1 and M1. Recently, we discovered that a subset of pyramidal neurons in the infragranular layers of S1 receive especially strong input from M1 (Kinnischtzke AK, Simons DJ, Fanselow EE. Cereb Cortex 24: 2237–2248, 2014), suggesting that M1 may affect specific classes of pyramidal neurons differently. Here, using combined optogenetic and retrograde labeling approaches in the mouse, we examined the strengths of M1 inputs to five classes of infragranular S1 neurons categorized by their projections to particular cortical and subcortical targets. We found that the magnitude of M1 synaptic input to S1 pyramidal neurons varies greatly depending on the projection target of the postsynaptic neuron. Of the populations examined, M1-projecting corticocortical neurons in L6 received the strongest M1 inputs, whereas ventral posterior medial nucleus-projecting corticothalamic neurons, also located in L6, received the weakest. Each population also possessed distinct intrinsic properties. The results suggest that M1 differentially engages specific classes of S1 projection neurons, thereby regulating the motor-related influence S1 exerts over subcortical structures.


2021 ◽  
Vol 126 (4) ◽  
pp. 1159-1171
Author(s):  
Katerina D. Oikonomou ◽  
Elissa J. Donzis ◽  
Minh T. N. Bui ◽  
Carlos Cepeda ◽  
Michael S. Levine

We used two-photon microscopy to examine calcium influx induced by action potentials in cortical pyramidal neurons from a mouse model of Huntington’s disease (HD), the R6/2. The amplitude of somatic calcium transients was reduced in R6/2 mice compared with controls. This reduction was compensated by increased decay times, which could lead to reduced calcium buffering capacity. L-type calcium channel and ryanodine receptor blockers reduced calcium transient area in HD neurons, suggesting new therapeutic avenues.


2020 ◽  
Vol 6 (23) ◽  
pp. eaaz1584 ◽  
Author(s):  
Jennifer Romanos ◽  
Dietmar Benke ◽  
Daniela Pietrobon ◽  
Hanns Ulrich Zeilhofer ◽  
Mirko Santello

Astrocytes are essential contributors to neuronal function. As a consequence, disturbed astrocyte-neuron interactions are involved in the pathophysiology of several neurological disorders, with a strong impact on brain circuits and behavior. Here, we describe altered cortical physiology in a genetic mouse model of familial hemiplegic migraine type 2 (FHM2), with reduced expression of astrocytic Na+,K+-ATPases. We used whole-cell electrophysiology, two-photon microscopy, and astrocyte gene rescue to demonstrate that an impairment in astrocytic glutamate uptake promotes NMDA spike generation in dendrites of cingulate cortex pyramidal neurons and enhances output firing of these neurons. Astrocyte compensation of the defective ATPase in the cingulate cortex rescued glutamate uptake, prevented abnormal NMDA spikes, and reduced sensitivity to cranial pain triggers. Together, our results demonstrate that impaired astrocyte function alters neuronal activity in the cingulate cortex and facilitates migraine-like cranial pain states in a mouse model of migraine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javier Jimenez-Martin ◽  
Daniil Potapov ◽  
Kay Potapov ◽  
Thomas Knöpfel ◽  
Ruth M. Empson

AbstractCholinergic modulation of brain activity is fundamental for awareness and conscious sensorimotor behaviours, but deciphering the timing and significance of acetylcholine actions for these behaviours is challenging. The widespread nature of cholinergic projections to the cortex means that new insights require access to specific neuronal populations, and on a time-scale that matches behaviourally relevant cholinergic actions. Here, we use fast, voltage imaging of L2/3 cortical pyramidal neurons exclusively expressing the genetically-encoded voltage indicator Butterfly 1.2, in awake, head-fixed mice, receiving sensory stimulation, whilst manipulating the cholinergic system. Altering muscarinic acetylcholine function re-shaped sensory-evoked fast depolarisation and subsequent slow hyperpolarisation of L2/3 pyramidal neurons. A consequence of this re-shaping was disrupted adaptation of the sensory-evoked responses, suggesting a critical role for acetylcholine during sensory discrimination behaviour. Our findings provide new insights into how the cortex processes sensory information and how loss of acetylcholine, for example in Alzheimer’s Disease, disrupts sensory behaviours.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Wanying Zhang ◽  
Randy M Bruno

Layer (L) 2/3 pyramidal neurons in the primary somatosensory cortex (S1) are sparsely active, spontaneously and during sensory stimulation. Long-range inputs from higher areas may gate L2/3 activity. We investigated their in vivo impact by expressing channelrhodopsin in three main sources of feedback to rat S1: primary motor cortex, secondary somatosensory cortex, and secondary somatosensory thalamic nucleus (the posterior medial nucleus, POm). Inputs from cortical areas were relatively weak. POm, however, more robustly depolarized L2/3 cells and, when paired with peripheral stimulation, evoked action potentials. POm triggered not only a stronger fast-onset depolarization but also a delayed all-or-none persistent depolarization, lasting up to 1 s and exhibiting alpha/beta-range oscillations. Inactivating POm somata abolished persistent but not initial depolarization, indicating a recurrent circuit mechanism. We conclude that secondary thalamus can enhance L2/3 responsiveness over long periods. Such timescales could provide a potential modality-specific substrate for attention, working memory, and plasticity.


Sign in / Sign up

Export Citation Format

Share Document