scholarly journals CycleFlow quantifies cell-cycle heterogeneity in vivo

2020 ◽  
Author(s):  
Adrien Jolly ◽  
Ann-Kathrin Fanti ◽  
Ines Gräßer ◽  
Nils B. Becker ◽  
Thomas Höfer

AbstractWhile the average cell-cycle length in a cell population can be derived from pulse-chase experiments, proliferative heterogeneity has been difficult to quantify. Here we describe CycleFlow, a broadly applicable method that applies Bayesian inference to combined measurements of EdU incorporation and DNA content. CycleFlow accurately quantifies the fraction of proliferating versus quiescent cells and the durations of cell-cycle phases of the proliferating cells in vitro and in vivo.

2015 ◽  
Author(s):  
david miguez

The understanding of the regulatory processes that orchestrate stem cell maintenance is a cornerstone in developmental biology. Here, we present a mathematical model based on a branching process formalism that predicts average rates of proliferative and differentiative divisions in a given stem cell population. In the context of vertebrate spinal neurogenesis, the model predicts complex non-monotonic variations in the rates of pp, pd and dd modes of division as well as in cell cycle length, in agreement with experimental results. Moreover, the model shows that the differentiation probability follows a binomial distribution, allowing us to develop equations to predict the rates of each mode of division. A phenomenological simulation of the developing spinal cord informed with the average cell cycle length and division rates predicted by the mathematical model reproduces the correct dynamics of proliferation and differentiation in terms of average numbers of progenitors and differentiated cells. Overall, the present mathematical framework represents a powerful tool to unveil the changes in the rate and mode of division of a given stem cell pool by simply quantifying numbers of cells at different times.


1996 ◽  
Vol 16 (7) ◽  
pp. 3789-3798 ◽  
Author(s):  
X Huet ◽  
J Rech ◽  
A Plet ◽  
A Vié ◽  
J M Blanchard

Transcription of the gene coding for cyclin A, a protein required for S-phase transit, is cell cycle regulated and is restricted to proliferating cells. To further explore transcriptional regulation linked to cell division cycle control, a genomic clone containing 5' flanking sequences of the murine cyclin A gene was isolated. When it was fused to a luciferase reporter gene, it was shown to function as a proliferation-regulated promoter in NIH 3T3 cells. Transcription of the mouse cyclin A gene is negatively regulated by arrest of cell proliferation. A mutation of a GC-rich sequence conserved between mice and humans is sufficient to relieve transcriptional repression, resulting in a promoter with constitutively high activity. In agreement with this result, in vivo footprinting reveals a protection of the cell cycle-responsive element in G0/early G1 cells which is not observed at later stages of the cell cycle. Moreover, the footprint is present in dimethyl sulfoxide-induced differentiating and not in proliferating Friend erythroleukemia cells. Conversely, two other sites, which in vitro bind ATF-1 and NF-Y, respectively, are constitutively occupied throughout cell cycle progression.


2020 ◽  
Author(s):  
Amber Blaauboer ◽  
Stephanie Booy ◽  
Peter M. van Koetsveld ◽  
Bas Karels ◽  
Fadime Dogan ◽  
...  

Abstract Background: Adjuvant gemcitabine for pancreatic cancer has limited efficacy in the clinical setting. Impaired drug metabolism is associated with treatment resistance. We aimed to evaluate the chemosensitising effect of interferon-beta (IFN-β).Methods: BxPC-3, CFPAC-1, and Panc-1 cells were pre-treated with IFN-β followed by gemcitabine monotherapy. The effect on cell growth, colony formation, and cell cycle was determined. RT-qPCR was used to measure gene expression. BxPC-3 cells were used in a heterotopic subcutaneous mouse model. Results: IFN-β increased sensitivity to gemcitabine (4-, 7.7-, and 1.7-fold EC50 decrease in BxPC-3, CFPAC-1, and Panc-1, respectively; all P<0.001). Findings were confirmed when assessing colony formation. The percentage of cells in the S-phase was significantly increased after IFN-β treatment only in BxPC-3 and CFPAC-1 by 12% and 7%, respectively (p<0.001 and p<0.05, respectively). Thereby, IFN-β upregulated expression of the drug transporters SLC28A1 in BxPC-3 (252%) and SLC28A3 in BxPC-3 (127%) and CFPAC-1 (223%) (all p<0.001). In vivo, combination therapy reduced tumor volume with 45% (P=0.01). Both ex vivo and in vivo data demonstrate a significant reduction in the number of proliferating cells, whereas apoptosis was increased. Conclusions: For the first time, we validated the chemosensitising effects of IFN-β when combined with gemcitabine in vitro, ex vivo, and in vivo. This was driven by cell cycle modulation and associated with an upregulation of genes involving intracellular uptake of gemcitabine. The use of IFN-β in combination with gemcitabine seems promising in patients with pancreatic cancer and needs to be further explored.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Amber Blaauboer ◽  
Stephanie Booy ◽  
Peter M. van Koetsveld ◽  
Bas Karels ◽  
Fadime Dogan ◽  
...  

Abstract Background Adjuvant gemcitabine for pancreatic cancer has limited efficacy in the clinical setting. Impaired drug metabolism is associated with treatment resistance. We aimed to evaluate the chemosensitising effect of interferon-beta (IFN-β). Methods BxPC-3, CFPAC-1, and Panc-1 cells were pre-treated with IFN-β followed by gemcitabine monotherapy. The effect on cell growth, colony formation, and cell cycle was determined. RT-qPCR was used to measure gene expression. BxPC-3 cells were used in a heterotopic subcutaneous mouse model. Results IFN-β increased sensitivity to gemcitabine (4-, 7.7-, and 1.7-fold EC50 decrease in BxPC-3, CFPAC-1, and Panc-1, respectively; all P < 0.001). Findings were confirmed when assessing colony formation. The percentage of cells in the S-phase was significantly increased after IFN-β treatment only in BxPC-3 and CFPAC-1 by 12 and 7%, respectively (p < 0.001 and p < 0.05, respectively). Thereby, IFN-β upregulated expression of the drug transporters SLC28A1 in BxPC-3 (252%) and SLC28A3 in BxPC-3 (127%) and CFPAC-1 (223%) (all p < 0.001). In vivo, combination therapy reduced tumor volume with 45% (P = 0.01). Both ex vivo and in vivo data demonstrate a significant reduction in the number of proliferating cells, whereas apoptosis was increased. Conclusions For the first time, we validated the chemosensitising effects of IFN-β when combined with gemcitabine in vitro, ex vivo, and in vivo. This was driven by cell cycle modulation and associated with an upregulation of genes involving intracellular uptake of gemcitabine. The use of IFN-β in combination with gemcitabine seems promising in patients with pancreatic cancer and needs to be further explored.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Shuichiro Higo ◽  
Yoshihiro Asano ◽  
Yuki Masumura ◽  
Yasushi Sakata ◽  
Masafumi Kitakaze ◽  
...  

Background: Tissue fibrosis plays important roles in the pathogenesis of chronic diseases, including heart failure. The mechanism underlying interstitial fibroblast proliferation is a promising analytical target for therapeutic applications. Here we developed quantitative epigenome profiling to identify a critical regulator in interstitial cell populations that emerges during the progression of heart failure. Methods and Results: We subjected pressure-overloaded hearts of mice to trimethylated histone H3 lysine 4 (H3K4me3) ChIP-sequence and RNA-sequence. Expression analysis followed by quantitative H3K4me3 profiling identified 45 fibrosis-related genes with significant H3K4me3 enrichment in failing hearts, including Meox1 transcription factor. Meox1 emerged in the interstitial fibrotic region in failing heart, and intriguingly Meox1 was expressed in the limited population of cardiac fibroblasts both in vivo and in vitro. Meox1-positive fibroblasts were increased in response to a paracrine signal from cardiomyocytes, and knockdown of Meox1 completely inhibited the reactive proliferation of cardiac fibroblasts stimulated by conditioned medium from cardiomyocytes. Gene expression profiling combined with siRNAs clarified that Meox1 depletion resulted in down regulation in the mitosis-related genes including Aurora B kinase. Indeed, Meox1 depletion decreased the cells under mitosis, but conversely increased the proportion of DNA synthesizing cells, thereby inhibited mitotic transition. The cell-cycle synchronization analysis and promoter analysis using live-cell imaging clarified that Meox1 oscillated throughout the cell-cycle and specifically emerged in G2/M phase. Finally, we revealed that Meox1 heterogenously expressed in the interstitial fibrotic are of human ventricular heart tissues from patients with end-stage heart failure. Notably, Meox1 expression was significantly correlated with the fibrosis-related genes in diseased ventricular heart tissues (n=15), suggesting the pathological relevance in clinical settings. Conclusion: Our findings identify a novel cell-cycle regulator and propose that Meox1 is a potential target for therapies aimed at preventing tissue fibrosis.


2005 ◽  
Vol 25 (18) ◽  
pp. 8166-8178 ◽  
Author(s):  
Egle Balciunaite ◽  
Alexander Spektor ◽  
Nathan H. Lents ◽  
Hugh Cam ◽  
Hein te Riele ◽  
...  

ABSTRACT Biochemical and genetic studies have determined that retinoblastoma protein (pRB) tumor suppressor family members have overlapping functions. However, these studies have largely failed to distinguish functional differences between the highly related p107 and p130 proteins. Moreover, most studies pertaining to the pRB family and its principal target, the E2F transcription factor, have focused on cells that have reinitiated a cell cycle from quiescence, although recent studies suggest that cycling cells exhibit layers of regulation distinct from mitogenically stimulated cells. Using genome-wide chromatin immunoprecipitation, we show that there are distinct classes of genes directly regulated by unique combinations of E2F4, p107, and p130, including a group of genes specifically regulated in cycling cells. These groups exhibit both distinct histone acetylation signatures and patterns of mammalian Sin3B corepressor recruitment. Our findings suggest that cell cycle-dependent repression results from recruitment of an unexpected array of diverse complexes and reveals specific differences between transcriptional regulation in cycling and quiescent cells. In addition, factor location analyses have, for the first time, allowed the identification of novel and specific targets of the highly related transcriptional regulators p107 and p130, suggesting new and distinct regulatory networks engaged by each protein in continuously cycling cells.


1998 ◽  
Vol 18 (12) ◽  
pp. 7487-7498 ◽  
Author(s):  
Sheng Wang ◽  
Richik N. Ghosh ◽  
Srikumar P. Chellappan

ABSTRACT Cells initiate proliferation in response to growth factor stimulation, but the biochemical mechanisms linking signals received at the cell surface receptors to the cell cycle regulatory molecules are not yet clear. In this study, we show that the signaling molecule Raf-1 can physically interact with Rb and p130 proteins in vitro and in vivo and that this interaction can be detected in mammalian cells without overexpressing any component. The binding of Raf-1 to Rb occurs subsequent to mitogen stimulation, and this interaction can be detected only in proliferating cells. Raf-1 can inactivate Rb function and can reverse Rb-mediated repression of E2F1 transcription and cell proliferation efficiently. The region of Raf-1 involved in Rb binding spanned residues 1 to 28 at the N terminus, and functional inactivation of Rb required a direct interaction. Serum stimulation of quiescent human fibroblast HSF8 cells led to a partial translocation of Raf-1 into the nucleus, where it colocalized with Rb. Further, Raf-1 was able to phosphorylate Rb in vitro quite efficiently. We believe that the physical interaction of Raf-1 with Rb is a vital step in the growth factor-mediated induction of cell proliferation and that Raf-1 acts as a direct link between cell surface signaling cascades and the cell cycle machinery.


1992 ◽  
Vol 40 (9) ◽  
pp. 1405-1411 ◽  
Author(s):  
P E Knapp

Studies of cell cycles have traditionally employed [3H]- and [14C]-thymidine to label the DNA of proliferating cells and autoradiography to reveal the thymidine label. The development of antibodies to the thymidine analogue 5-bromodeoxyuridine (BrdU) has allowed the development of an immunocytochemical method analogous to the thymidine autoradiographic technique. In direct comparisons, we found that the immunocytochemical method consistently detected a larger number of proliferating cells. This suggests that it may be a more sensitive index of proliferation than thymidine autoradiography in some systems. We used the BrdU method to analyze the cycle of astroglia cultured from neonatal mouse cerebral cortex. Cells were exposed to BrdU for 1 hr to label a discrete subpopulation of proliferating cells. At 2-36 hr after the pulse, a combination of anti-BrdU immunocytochemistry and counterstaining with propidium iodide was used to identify proliferating cells. The length of the cell cycle was determined by charting the percent of BrdU-labeled mitotic cells vs time after the pulse. We found the average length of the cell cycle of astrocytes grown in vitro to be 20.5 hr. The combined G2 + M phases were 2-3 hr. These values are virtually identical with those found for glial cells in vivo, suggesting that the culture environment does not interfere with the normal control of cell cycle length.


2021 ◽  
pp. 153537022110234
Author(s):  
Xuyang Hou ◽  
Qiuguo Li ◽  
Leping Yang ◽  
Zhulin Yang ◽  
Jun He ◽  
...  

Pancreatic cancer is a highly malignant cancer of the pancreas with a very poor prognosis. Methylation of histone lysine residues is essential for regulating cancer physiology and pathophysiology, mediated by a set of methyltransferases (KMTs) and demethylases (KDMs). This study surveyed the expression of methylation regulators functioning at lysine 9 of histone 3 (H3K9) in pancreatic lesions and explored the underlying mechanisms. We analyzed KDM1A and KDM3A expression in clinical samples by immunohistochemical staining and searching the TCGA PAAD program and GEO datasets. Next, we identified the variation in tumor growth in vitro and in vivo after knockdown of KDM1A or KDM3A and explored the downstream regulators of KDM1A and KDM3A via RNA-seq, and gain- and loss-of-function assays. Eleven H3K9 methylation regulators were highly expressed in pancreatic cancer, and only KDM1A and KDM3A expression positively correlated with the clinicopathological characteristics in pancreatic cancer. High expression of KDM1A or KDM3A positively correlated with pathological grade, lymphatic metastasis, invasion, and clinical stage. Kaplan–Meier analysis indicated that a higher level of KDM1A or KDM3A led to a shorter survival period. Knockdown of KDM1A or KDM3A led to markedly impaired tumor growth in vitro and in vivo. Mechanistically, CCNA2, a cell cycle-associated gene was partially responsible for KDM1A knockdown-mediated effect and CDK6, also a cell cycle-associated gene was partially responsible for KDM3A knockdown-mediated effect on pancreatic cancer cells. Our study demonstrates that KDM1A and KDM3A are highly expressed in pancreatic cancer and are intimately correlated with clinicopathological factors and prognosis. The mechanism of action of KDM1A or KDM3A was both linked to the regulation of cell cycle-associated genes, such as CCNA2 or CDK6, respectively, by an H3K9-dependent pathway.


Sign in / Sign up

Export Citation Format

Share Document