A key linear epitope for a potent neutralizing antibody to SARS-CoV-2 S-RBD

Author(s):  
Tingting Li ◽  
Xiaojian Han ◽  
Yingming Wang ◽  
Chenjian Gu ◽  
Jianwei Wang ◽  
...  

AbstractThe spread of SARS-CoV-2 confers a serious threat to the public health without effective intervention strategies1–3. Its variant carrying mutated Spike (S) protein D614G (SD614G) has become the most prevalent form in the current global pandemic4,5. We have identified a large panel of potential neutralizing antibodies (NAbs) targeting the receptor-binding domain (RBD) of SARS-CoV-2 S6. Here, we focused on the top 20 potential NAbs for the mechanism study. Of them, the top 4 NAbs could individually neutralize both authentic SARS-CoV-2 and SD614G pseudovirus efficiently. Our epitope mapping revealed that 16/20 potent NAbs overlapped the same steric epitope. Excitingly, we found that one of these potent NAbs (58G6) exclusively bound to a linear epitope on S-RBD (termed as 58G6e), and the interaction of 58G6e and the recombinant ACE2 could be blocked by 58G6. We confirmed that 58G6e represented a key site of vulnerability on S-RBD and it could positively react with COVID-19 convalescent patients’ plasma. We are the first, as far as we know, to provide direct evidences of a linear epitope that can be recognized by a potent NAb against SARS-CoV-2 S-RBD. This study paves the way for the applications of these NAbs and the potential safe and effective vaccine design.

2010 ◽  
Vol 84 (23) ◽  
pp. 12236-12244 ◽  
Author(s):  
Jason S. McLellan ◽  
Man Chen ◽  
Jung-San Chang ◽  
Yongping Yang ◽  
Albert Kim ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) is a major cause of pneumonia and bronchiolitis in infants and elderly people. Currently there is no effective vaccine against RSV, but passive prophylaxis with neutralizing antibodies reduces hospitalizations. To investigate the mechanism of antibody-mediated RSV neutralization, we undertook structure-function studies of monoclonal antibody 101F, which binds a linear epitope in the RSV fusion glycoprotein. Crystal structures of the 101F antigen-binding fragment in complex with peptides from the fusion glycoprotein defined both the extent of the linear epitope and the interactions of residues that are mutated in antibody escape variants. The structure allowed for modeling of 101F in complex with trimers of the fusion glycoprotein, and the resulting models suggested that 101F may contact additional surfaces located outside the linear epitope. This hypothesis was supported by surface plasmon resonance experiments that demonstrated 101F bound the peptide epitope ∼16,000-fold more weakly than the fusion glycoprotein. The modeling also showed no substantial clashes between 101F and the fusion glycoprotein in either the pre- or postfusion state, and cell-based assays indicated that 101F neutralization was not associated with blocking virus attachment. Collectively, these results provide a structural basis for RSV neutralization by antibodies that target a major antigenic site on the fusion glycoprotein.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Rahajeng N. Tunjungputri ◽  
Erpryta Nurdia Tetrasiwi ◽  
Merlinda Veronica ◽  
Jacub Pandelaki ◽  
Fera Ibrahim ◽  
...  

Introduction. The COVID-19 pandemic has entered a new phase with the roll-out of several vaccines worldwide at an accelerated phase. The occurrence of a more severe presentation of COVID-19 after vaccination may affect policymakers’ decision-making and vaccine uptake by the public. Vaccine-associated disease enhancement (VADE) is the modified presentation of infections in individuals after having received a prior vaccination. Currently, little is known about the potential of vaccine-associated disease enhancement (VADE) following COVID-19 immunization. Case Illustration. We herewith report two patients admitted with confirmed COVID-19 pneumonia with a history of CoronaVac vaccination. The first patient with a relatively milder course of the disease had received two doses of CoronaVac, whereas the second patient with a more progressive course of the disease received only one dose before developing symptoms and being admitted to the hospital. Our observations suggest that vaccination could act in boosting the inflammatory process and reveal the previously asymptomatic COVID-19 illness. Theoretically, vaccines could induce VADE, where only suboptimal, nonprotective titers of neutralizing antibodies were produced or proinflammatory T-helper type 2 response was induced. Secondly, enhanced respiratory disease (ERD) could manifest, where pulmonary symptoms are more severe due to peribronchial monocytic and eosinophilic infiltration. Understanding VADE is important for the decision-making by the public, clinicians, and policymakers and is warranted for successful vaccination uptake. Conclusion. We report two cases of patients developing COVID-19 shortly after CoronaVac vaccination in which VADE is likely. We recommend that current vaccination strategies consider the measurement of neutralizing antibody titer as a guide in ensuring the safest strategy for mass immunization. Studies are needed to investigate the true incidence of VADE on vaccinated individuals as well as on how to differentiate between VADE and severe manifestations of COVID-19 that are unrelated to vaccination.


2018 ◽  
Author(s):  
Sanjeev Kumar ◽  
Harekrushna Panda ◽  
Muzamil Ashraf Makhdoomi ◽  
Nitesh Mishra ◽  
Haaris Ahsan Safdari ◽  
...  

AbstractBroadly neutralizing antibodies (bNAbs) have demonstrated protective effects against HIV-1 in primate studies and recent human clinical trials. Elite-neutralizers are potential candidates for isolation of HIV-1 bNAbs and coexistence of bNAbs such as BG18 with neutralization susceptible autologous viruses in an HIV-1 infected adult elite controller has been suggested to control viremia. Disease progression is faster in HIV-1 infected children than adults. Plasma bNAbs with multiple epitope specificities are developed in HIV-1 chronically infected children with more potency and breadth than in adults. Therefore, we evaluated the specificity of plasma neutralizing antibodies of an antiretroviral naïve HIV-1 clade C chronically infected pediatric elite neutralizer AIIMS_330. The plasma antibodies showed broad and potent HIV-1 neutralizing activity with >87% (29/33) breadth, median inhibitory dilution (ID50) value of 1246 and presence of N160 and N332-supersite dependent HIV-1 bNAbs. The sorting of BG505.SOSIP.664.C2 T332N gp140 HIV-1 antigen-specific single B cells of AIIMS_330 resulted in the isolation of an HIV-1 N332-supersite dependent bNAb AIIMS-P01. The AIIMS-P01 neutralized 67% of HIV-1 cross-clade viruses; exhibited substantial indels despite limited somatic hypermutations; interacted with native-like HIV-1 trimer as observed in negative stain electron microscopy and demonstrated high binding affinity. In addition, AIIMS-P01 potently neutralized the coexisting and evolving autologous viruses suggesting the coexistence of vulnerable autologous viruses and HIV-1 bNAbs in AIIMS_330 pediatric elite neutralizer. Further studies on such pediatric elite-neutralizers and isolation of novel HIV-1 pediatric bNAbs may provide newer insights to guide vaccine design.ImportanceMore than 50% of the HIV-1 infections globally are caused by clade C viruses. Till date, there is no effective vaccine to prevent HIV-1 infection. Based on the structural information of the currently available HIV-1 bNAbs, attempts are underway to design immunogens that can elicit correlates of protection upon vaccination. Here we report the isolation and characterization of an HIV-1 N332-supersite dependent bNAb AIIMS-P01 from a clade C chronically infected pediatric elite neutralizer. The N332-supersite is an important epitope and is one of the current HIV-1 vaccine targets. AIIMS-P01 potently neutralized the contemporaneous and autologous evolving viruses and exhibits substantial indels despite low somatic hypermutations. Taken together with the information on infant bNAbs, further isolation of bNAbs contributing to the plasma breadth in HIV-1 infected children may help to better understand their development and characteristics, which in turn may guide vaccine design.


Author(s):  
Fan Wu ◽  
Aojie Wang ◽  
Mei Liu ◽  
Qimin Wang ◽  
Jun Chen ◽  
...  

BackgroundThe COVID-19 pandemic caused by SARS-CoV-2 coronavirus threatens global public health. Currently, neutralizing antibodies (NAbs) versus this virus are expected to correlate with recovery and protection of this disease. However, the characteristics of these antibodies have not been well studied in association with the clinical manifestations in patients.MethodsPlasma collected from 175 COVID-19 recovered patients with mild symptoms were screened using a safe and sensitive pseudotyped-lentiviral-vector-based neutralization assay. Spike-binding antibody in plasma were determined by ELISA using RBD, S1, and S2 proteins of SARS-CoV-2. The levels and the time course of SARS-CoV-2-specific NAbs and the spike-binding antibodies were monitored at the same time.FindingsSARS-CoV-2 NAbs were unable to cross-reactive with SARS-CoV virus. SARS-CoV-2-specific NAbs were detected in patients from day 10-15 after the onset of the disease and remained thereafter. The titers of NAb among these patients correlated with the spike-binding antibodies targeting S1, RBD, and S2 regions. The titers of NAbs were variable in different patients. Elderly and middle-age patients had significantly higher plasma NAb titers (P<0.0001) and spike-binding antibodies (P=0.0003) than young patients. Notably, among these patients, there were ten patients whose NAb titers were under the detectable level of our assay (ID50: < 40); while in contrast, two patients, showed very high titers of NAb, with ID50 :15989 and 21567 respectively. The NAb titers were positive correlated with plasma CRP levels but negative correlated with the lymphocyte counts of patients at the time of admission, indicating an association between humoral response and cellular immune response.InterpretationThe variations of SARS-CoV-2 specific NAbs in recovered COVID-19 patients may raise the concern about the role of NAbs on disease progression. The correlation of NAb titers with age, lymphocyte counts, and blood CRP levels suggested that the interplay between virus and host immune response in coronavirus infections should be further explored for the development of effective vaccine against SARS-CoV-2 virus. Furthermore, titration of NAb is helpful prior to the use of convalescent plasma for prevention or treatment.FundingMinistry of Science and Technology of China, National Natural Science Foundation of China, Shanghai Municipal Health Commission, and Chinese Academy of Medical Sciences


2021 ◽  
Author(s):  
Amani A Saleh ◽  
Mohamed A Saad ◽  
Islam Ryan ◽  
Magdy Amin ◽  
Mohamed I Shindy ◽  
...  

Abstract Background Current worldwide pandemic COVID-19 with high numbers of mortality rates and huge economic problems require an urgent demand for safe and effective vaccine development. Inactivated SARS-CoV2 vaccine with alum. Hydroxide can play an important role in reducing the impacts of the COVID-19 pandemic. In this study, vaccine efficacy was evaluated through the detection of the neutralizing antibodies that protect mice from challenge with SARS-CoV 2 three weeks after the 2nd dose. We conclude that the vaccine described here has safety and desirable properties, and our data support further development and plans for clinical trials. Methods Characterized SARS-COV-2 strain, severe acute respiratory syndrome coronavirus 2 isolates (SARS-CoV-2/human/EGY/Egy-SERVAC/2020) with accession numbers; MT981440; MT981439; MT981441; MT974071; MT974069, and MW250352 at GenBank were isolated from Egyptian patients SARS-CoV-2-positive. Development of inactivated vaccine was carried out in a BSL—3 facilities and the immunogenicity was determined in mice at two doses (55 μg and 100 μg per dose). Results The distinct cytopathic effect (CPE) induced by SARS-COV-2 propagation on Vero cell monolayers and the viral particles were identified as Coronaviridae by transmission electron microscopy and RT-PCR on infected cells cultures. Immunogenicity of the developed vaccine indicated the high antigen-binding and neutralizing antibody titers, regardless of the dose concentration, with excellent safety profiles and no deaths or clinical symptoms in mice groups. The efficacy of the inactivated vaccine formulation was tested by the wild virus challenge of the vaccinated mice and viral replication detection in lung tissues. Conclusions Vaccinated mice recorded complete protection from challenge infection via inhibition of SARS-COV-2 replication in the lung tissues of mice following virus challenge, regardless of the level of serum neutralizing antibodies. This finding will support future trials for the evaluation of an applicable SARS-CoV-2 vaccine candidate.


Author(s):  
Kirill V. Kalnin ◽  
Timothy Plitnik ◽  
Michael Kishko ◽  
Jinrong Zhang ◽  
Donghui Zhang ◽  
...  

SummaryAn effective vaccine to address the global pandemic of coronavirus disease 2019 (COVID-19) is an urgent public health priority1. Novel synthetic mRNA and vector-based vaccine technologies offer an expeditious development path alternative to traditional vaccine approaches. Here we describe the efforts to utilize an mRNA platform for rational design and evaluations of mRNA vaccine candidates based on Spike (S) glycoprotein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus causing COVID-19. Several mRNA constructs expressing various structural conformations of S-protein, including wild type (WT), a pre-fusion stabilized mutant (2P), a furin cleavage-site mutant (GSAS) and a double mutant form (2P/GSAS), were tested in a preclinical animal model for their capacity to elicit neutralizing antibodies (nAbs). The lead 2P/GSAS candidate was further assessed in dose-ranging studies in mice and Cynomolgus macaques. The selected 2P/GSAS vaccine formulation, now designated MRT5500, elicited potent nAbs as measured in two types of neutralization assays. In addition, MRT5500 elicited TH1-biased responses in both mouse and non-human primate species, a result that helps to address a hypothetical concern regarding potential vaccine-associated enhanced respiratory diseases associated with TH2-biased responses. These data position MRT5500 as a viable vaccine candidate for clinical development against COVID-19.


2020 ◽  
Author(s):  
Patrick J Tighe ◽  
Richard A Urbanowicz ◽  
Lucy Fairclough ◽  
C Patrick McClure ◽  
Brian J Thomson ◽  
...  

COVID-19 continues to cause a pandemic, having infected more than 20 million people globally. Successful elimination of the SARS-CoV-2 virus will require an effective vaccine. However, the immune correlates of infection are currently poorly understood. While neutralizing antibodies are believed to be essential for protection against infection, the contribution of the neutralizing antibody response to resolution of SARS-CoV-2 infection has not yet been defined. In this study the antibody responses to the SARS-CoV-2 spike protein and nucleocapsid proteins were investigated in a UK patient cohort, using optimised immunoassays and a retrovirus-based pseudotype entry assay. It was discovered that in severe COVID-19 infections an early antibody response to both antigens was associated with improved prognosis of infection. While not all SARS-CoV-2-reactive sera were found to possess neutralizing antibodies, neutralizing potency of sera was found to be greater in patients who went on to resolve infection, compared with those that died from COVID-19. Furthermore, viral genetic variation in spike protein was found to influence the production of neutralizing antibodies. Infection with the recently described spike protein variant 614G produced higher levels of neutralizing antibodies when compared to viruses possessing the 614D variant. These findings support the assertion that vaccines targeting generation of neutralizing antibodies may be useful at limiting SARS-CoV-2 infection. Assessment of the antibody responses to SARS-CoV-2 at time of diagnosis will be a useful addition to the diagnostic toolkit, enabling stratification of clinical intervention for severe COVID-19 disease.


2020 ◽  
Vol 3 (4) ◽  
pp. 246-256
Author(s):  
Yaping Sun ◽  
Mitchell Ho

Abstract SARS-CoV-2 antibody therapeutics are being evaluated in clinical and preclinical stages. As of 11 October 2020, 13 human monoclonal antibodies targeting the SARS-CoV-2 spike protein have entered clinical trials with three (REGN-COV2, LY3819253/LY-CoV555, and VIR-7831/VIR-7832) in phase 3. On 9 November 2020, the US Food and Drug Administration issued an emergency use authorization for bamlanivimab (LY3819253/LY-CoV555) for the treatment of mild-to-moderate COVID-19. This review outlines the development of neutralizing antibodies against SARS-CoV-2, with a focus on discussing various antibody discovery strategies (animal immunization, phage display and B cell cloning), describing binding epitopes and comparing neutralizing activities. Broad-neutralizing antibodies targeting the spike proteins of SARS-CoV-2 and SARS-CoV might be helpful for treating COVID-19 and future infections. VIR-7831/7832 based on S309 is the only antibody in late clinical development, which can neutralize both SARS-CoV-2 and SARS-CoV although it does not directly block virus receptor binding. Thus far, the only cross-neutralizing antibody that is also a receptor binding blocker is nanobody VHH-72. The feasibility of developing nanobodies as inhaled drugs for treating COVID-19 and other respiratory diseases is an attractive idea that is worth exploring and testing. A cocktail strategy such as REGN-COV2, or engineered multivalent and multispecific molecules, combining two or more antibodies might improve the efficacy and protect against resistance due to virus escape mutants. Besides the receptor-binding domain, other viral antigens such as the S2 subunit of the spike protein and the viral attachment sites such as heparan sulfate proteoglycans that are on the host cells are worth investigating.


Author(s):  
Syed Iqbal Hussain ◽  
Nandagopal Panneerselvam ◽  
Suniti Solomon ◽  
Sunil S. Solomon ◽  
Kaavya Adam ◽  
...  

Identification of broadly neutralizing antibodies (NAbs) generated during the course of HIV-1 infection is essential for effective HIV-1 vaccine design. The magnitude and breadth of neutralizing activity in the sera from 46 antiretroviral treatment–naive HIV-1 clade C-infected individuals was measured in a single round infection assay using TZM-bl cells and multisubtype panel of env-pseudotyped viruses. Higher levels of NAb response (NAb titer 500 to >40 000) were measured in these patients against tier 1 and tier 2 viruses. The average magnitude of the NAb responses of chronically infected individuals against heterologous viruses was consistently higher than the response observed from individuals with long-term nonprogressor ( P = .086). To conclude, high titers of HIV-1 cross-neutralizing activity were observed in the sera from a subset of HIV-1-infected individuals in Chennai, India. Additional studies of the epitopes recognized by these antibodies may facilitate the discovery of an effective vaccine immunogen.


2017 ◽  
Vol 91 (20) ◽  
Author(s):  
Brian G. Pierce ◽  
Elisabeth N. Boucher ◽  
Kurt H. Piepenbrink ◽  
Monir Ejemel ◽  
Chelsea A. Rapp ◽  
...  

ABSTRACT Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, as well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines. IMPORTANCE Hepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly neutralizing antibodies. In vivo results in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus.


Sign in / Sign up

Export Citation Format

Share Document