scholarly journals Arduino-based lab equipment: building a multipurpose pressure transducer device

2020 ◽  
Author(s):  
Stefano Di Domenico

AbstractBackgroundLab equipments could be expensive and their cost can be unsustainable for scientist with limited financial resources. In order to overcome these impediments and to improve our experimental studies on liver resection in rat, a multipurpose pressure measurement device was project and realized using low cost components.Materials and MethodsThe device is based on an Arduino board, an easy-to-use and open-source microcontroller, that receives analog inputs from an instrumental amplifier connected to a disposable pressure traducer. The analogic inputs are converted to digital values and an LCD can visualize the pressure values calculated from the digital inputs. Programs has been written using C++ within the Arduino IDE, while the pressure data has been recorded on PC using data-logging freeware. Calibration has been performed using a water column as standard. Measure agreement was studied by comparing this device with a water column and with a standard clinical monitoring system.ResultsThe final device it is handy and portable, it costs less the 20 euros and both the hardware and the software are easy modifiable. Calibration procedures resulted in reliable measurements as showed by the Bland-Altman measure agreement analysis.Discussion and conclusionThe final device meets the goals of the original project and offers pressure measurements that are enough accurate for our studies on liver regeneration.In a wider contest the present article shows the potentiality of the open-source-hardware movement to increase the opportunities for scientists and educators.

Author(s):  
Antor Mahamudul Hashan ◽  
Abdullah Haidari ◽  
Srishti Saha ◽  
Titas Paul

Due to the rapid development of technology, the use of numerically controlled machines in the industry is increasing. The main idea behind this paper is computer-aided design (CAD) based low-cost computer numerical control 2D drawing robot that can accurately draw complex circuits, diagrams, logos, etc. The system is created using open-source hardware and software, which makes it available at a low cost. The open-source LibreCAD application has been used for computer-aided design. Geometric data of a CAD model is converted to coordinate points using the python-based F-Engrave application. This system uses the Arduino UNO board as a signal generator of the universal g-code sender without compromising the performance. The proposed drawing robot is designed as a low-cost robot for educational purposes and aims to increase the student's interest in robotics and computer-aided design (CAD) skills to the next level. The drawing robot structure has been developed, and it meets the requirements of low cost with satisfactory experimental results.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3055
Author(s):  
Olivier Pieters ◽  
Tom De Swaef ◽  
Peter Lootens ◽  
Michiel Stock ◽  
Isabel Roldán-Ruiz ◽  
...  

The study of the dynamic responses of plants to short-term environmental changes is becoming increasingly important in basic plant science, phenotyping, breeding, crop management, and modelling. These short-term variations are crucial in plant adaptation to new environments and, consequently, in plant fitness and productivity. Scalable, versatile, accurate, and low-cost data-logging solutions are necessary to advance these fields and complement existing sensing platforms such as high-throughput phenotyping. However, current data logging and sensing platforms do not meet the requirements to monitor these responses. Therefore, a new modular data logging platform was designed, named Gloxinia. Different sensor boards are interconnected depending upon the needs, with the potential to scale to hundreds of sensors in a distributed sensor system. To demonstrate the architecture, two sensor boards were designed—one for single-ended measurements and one for lock-in amplifier based measurements, named Sylvatica and Planalta, respectively. To evaluate the performance of the system in small setups, a small-scale trial was conducted in a growth chamber. Expected plant dynamics were successfully captured, indicating proper operation of the system. Though a large scale trial was not performed, we expect the system to scale very well to larger setups. Additionally, the platform is open-source, enabling other users to easily build upon our work and perform application-specific optimisations.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Scott A. Longwell ◽  
Polly M. Fordyce

MicrIO is a low-cost, open-source hardware and software solution for automated sample input/output, bridging the gap between microfluidic devices and standard multiwell plates.


2015 ◽  
Vol 48 (29) ◽  
pp. 117-122 ◽  
Author(s):  
P. Reguera ◽  
D. García ◽  
M. Domínguez ◽  
M.A. Prada ◽  
S. Alonso

2020 ◽  
Author(s):  
Matthew Wincott ◽  
Andrew Jefferson ◽  
Ian M. Dobbie ◽  
Martin J. Booth ◽  
Ilan Davis ◽  
...  

ABSTRACTCommercial fluorescence microscope stands and fully automated XYZt fluorescence imaging systems are generally beyond the limited budgets available for teaching and outreach. We have addressed this problem by developing “Microscopi”, an accessible, affordable, DIY automated imaging system that is built from 3D printed and commodity off-the-shelf hardware, including electro-mechanical, computer and optical components. Our design features automated sample navigation and image capture with a simple web-based graphical user interface, accessible with a tablet or other mobile device. The light path can easily be switched between different imaging modalities. The open source Python-based control software allows the hardware to be driven as an integrated imaging system. Furthermore, the microscope is fully customisable, which also enhances its value as a learning tool. Here, we describe the basic design and demonstrate imaging performance for a range of easily sourced specimens.HighlightsPortable, low cost, self-build from 3D printed and commodity componentsMultimodal imaging: bright field, dark field, pseudo-phase and fluorescenceAutomated XYZt imaging from a tablet or smartphone via a simple GUIWide ranging applications in teaching, outreach and fieldworkOpen source hardware and software design, allowing user modification


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 84
Author(s):  
Renan Rocha Ribeiro ◽  
Elton Bauer ◽  
Rodrigo Lameiras

Low-cost electronics developed on easy-to-use prototyping platforms, such as Arduino, are becoming increasingly popular in various fields of science. This article presents an open-source and low-cost eight-channel data-logging system for temperature and humidity monitoring based on DHT22 (AM2302) sensors, named HIGROTERM. The system was designed to solve real needs of the Laboratory of Material Testing of the Department of Civil and Environmental Engineering at the University of Brasília. The system design, functionalities, hardware components, source code, bill of materials, assemblage and enclosure are thoroughly described to enable complete reproduction by the interested reader. The terminologies and instructions presented were simplified as much as possible to make it accessible to the greatest extent to researchers from different areas, especially those without electronics background. The data-acquisition system has an estimated total cost of USD 96.00, or USD 136.00 if eight sensor nodes are included, with a considerable margin for cost reduction. The authors expect that the HIGROTERM system may both be a valuable low-cost and customizable tool for the readers, as well a source of innovation and interest in low-cost electronics for real problem-solving in various fields of science.


Sign in / Sign up

Export Citation Format

Share Document