scholarly journals Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors

2020 ◽  
Author(s):  
Lampros Mavrommatis ◽  
Hyun-Woo Jeong ◽  
Gemma Gomez-Giro ◽  
Martin Stehling ◽  
Marie-Cecile Kienitz ◽  
...  

In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis towards limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single cell comparison to human fetal and adult myogenic progenitors reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach, further validated with Duchenne and CRISPR/Cas9 genome-edited Limb-girdle muscular dystrophy (LGMD2A) patient iPSC lines, provides a novel robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.

Author(s):  
Rocío Castro-Viñuelas ◽  
Clara Sanjurjo-Rodríguez ◽  
María Piñeiro-Ramil ◽  
Tamara Hermida Gómez ◽  
Isaac Fuentes-Boquete ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 817
Author(s):  
Magdalena Nowaczyk ◽  
Agnieszka Malcher ◽  
Agnieszka Zimna ◽  
Wojciech Łabędź ◽  
Łukasz Kubaszewski ◽  
...  

In the present study, the genetic modification of human skeletal muscle-derived stem/progenitor cells (SkMDS/PCs) was investigated to identify the optimal protocol for myogenic cell preparation for use in post-infarction heart therapy. We used two types of modifications: GFP-transfection (using electroporation) and SOD3 transduction (using a lentiviral vector). SkMDS/PCs were cultured under different in vitro conditions, including standard (21% oxygen) and hypoxic (3% oxygen), the latter of which corresponded to the prevailing conditions in the post-infarction heart. Transfection/transduction efficacy, skeletal myogenic cell marker expression (CD56), cellular senescence, and apoptosis, as well as the expression of antioxidant (SOD1, SOD2, and SOD3), anti-aging (SIRT1 and FOXO), anti-apoptotic (BCL2), and myogenic (MyoD and MyoG) genes, were evaluated. The percentage of GFP-positive SkMDS/PCs was determined as an indicator of the efficacy of transfection, which reached 55%, while transduction showed better efficiency, reaching approximately 85% as estimated by fluorescence microscopy. The CD56-positive SkMDS/PCs were present in approximately 77% of the tested cells after transient transfection and approximately 96% after transduction. Under standard in vitro culture conditions, the ability of the differentiated, transfected SkMDS/PCs to form myotubes was greater than that of the wild type (WT) cell population (p < 0.001), while the cells transduced with the SOD3 gene exhibited an increase in cell fusion under both standard (p < 0.05) and hypoxic conditions (p < 0.001). In transduced SkMDS/PCs, we observed a positive influence of SOD3 overexpression on cell ageing and apoptosis. We observed an increase in the percentage of young cells under standard (p < 0.05) and hypoxic (p < 0.001) in vitro culture conditions, with a notable decrease in the percentage of senescent and advanced senescent cells in the SOD3-overexpressing cell population detected compared to that observed for the untransduced muscle-derived cells. A lower percentage of apoptotic cells was observed for transduced SkMDS/PCs than that for WT cells under hypoxic in vitro culture conditions. In transiently transfected SkMDS/PCs, we observed significantly higher gene expression levels of SOD2 (almost 40-fold) (p < 0.001) and FOXO (p < 0.05) (approximately 3-fold) under both normoxic and hypoxic culture conditions and of BCL2 under hypoxia compared to those observed in untreated cells (WT). In addition, myogenic genes showed a significant increase in MyoD (almost 18-fold) expression under standard culture conditions (p < 0.0001) and decreased MyoG expression (approximately 2-fold) after transfection (p < 0.05) compared with that detected in the WT skeletal muscle-derived cell control. Taken together, these results demonstrate that SOD3-tranduced skeletal muscle-derived cells may have potential for use in the regenerative treatment of the post-infarction heart.


2021 ◽  
Vol 12 ◽  
Author(s):  
Olivier Boyer ◽  
Gillian Butler-Browne ◽  
Hector Chinoy ◽  
Giulio Cossu ◽  
Francesco Galli ◽  
...  

This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Emilie Barruet ◽  
Steven M Garcia ◽  
Jake Wu ◽  
Blanca M Morales ◽  
Stanley Tamaki ◽  
...  

Abnormalities in skeletal muscle repair can lead to poor function and complications such as scarring or heterotopic ossification (HO). Here, we use fibrodysplasia ossificans progressiva (FOP), a disease of progressive HO caused by ACVR1R206H (Activin receptor type-1 receptor) mutation, to elucidate how ACVR1 affects skeletal muscle repair. Rare and unique primary FOP human muscle stem cells (Hu-MuSCs) isolated from cadaveric skeletal muscle demonstrated increased ECM marker expression, showed skeletal muscle-specific impaired engraftment and regeneration ability. Human induced pluripotent stem cell (iPSC)-derived muscle stem/progenitor cells (iMPCs) single cell transcriptome analyses from FOP also revealed unusually increased ECM and osteogenic marker expression compared to control iMPCs. These results show that iMPCs can recapitulate many aspects of Hu-MuSCs for detailed in vitro study, that ACVR1 is a key regulator of Hu-MuSC function and skeletal muscle repair; and that ACVR1 activation in iMPCs or Hu-MuSCs may contribute to HO by changing the local tissue environment.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Seo Young Kim ◽  
Jihye Choi ◽  
Junhee Roh ◽  
Chul Hoon Kim

AbstractIn the CNS, pericytes are important for maintaining the blood–brain barrier (BBB) and for controlling blood flow. Recently, several methods were suggested for the differentiation of human pluripotent stem cells (hPSCs) into brain mural cells, specifically pericytes or vascular smooth muscle cells (vSMCs). Unfortunately, identifying the pericytes from among such hPSC-derived mural cells has been challenging. This is due both to the lack of pericyte-specific markers and to the loss of defining anatomical information inherent to culture conditions. We therefore asked whether NeuroTrace 500/525, a newly developed dye that shows cell-specific uptake into pericytes in the mouse brain, can help identify human induced pluripotent stem cell (hiPSC)-derived brain pericyte-like cells. First, we found that NeuroTrace 500/525 specifically stains primary cultured human brain pericytes, confirming its specificity in vitro. Second, we found that NeuroTrace 500/525 specifically labels hiPSC-derived pericyte-like cells, but not endothelial cells or vSMCs derived from the same hiPSCs. Last, we found that neuroectoderm-derived vSMCs, which have pericyte-like features, also take up NeuroTrace 500/525. These data indicate NeuroTrace 500/525 is useful for identifying pericyte-like cells among hiPSC-derived brain mural cells.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0232081 ◽  
Author(s):  
Anna Urciuolo ◽  
Elena Serena ◽  
Rusha Ghua ◽  
Susi Zatti ◽  
Monica Giomo ◽  
...  

2021 ◽  
Vol 13 ◽  
pp. 251584142199719
Author(s):  
Simranjeet Singh Grewal ◽  
Joseph J. Smith ◽  
Amanda-Jayne F. Carr

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 ( BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.


Sign in / Sign up

Export Citation Format

Share Document