scholarly journals Robust differentiation of human enteroendocrine cells from intestinal stem cells

2020 ◽  
Author(s):  
Daniel Zeve ◽  
Eric Stas ◽  
Xiaolei Yin ◽  
Sarah Dubois ◽  
Manasvi S. Shah ◽  
...  

ABSTRACTEnteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of key transcriptional regulators, GATA4, JNK and FOXO1, known to mediate endodermal development and hormone production, together with directed differentiation of human ISCs. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, and GIP upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniel Zeve ◽  
Eric Stas ◽  
Joshua de Sousa Casal ◽  
Prabhath Mannam ◽  
Wanshu Qi ◽  
...  

AbstractEnteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.


EMBO Reports ◽  
2011 ◽  
Vol 12 (6) ◽  
pp. 558-564 ◽  
Author(s):  
Roxana C Mustata ◽  
Tom Van Loy ◽  
Anne Lefort ◽  
Frédérick Libert ◽  
Sandra Strollo ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Daniel Richard Zeve ◽  
Eric Stas ◽  
Manasvi S Shah ◽  
David T Breault

Abstract Enteroendocrine (EE) cells are the most abundant hormone-producing cells in the human body and are vital for metabolism, as well as intestinal and pancreatic function. They have been implicated in the pathogenesis of multiple diseases including diabetes mellitus. Although recent studies have identified multiple signaling pathways (including Wnt, MAPK, BMP and Notch) that can induce low levels of EE cell differentiation, the production of functional human EE cells in vitro remains challenging, making their study and therapeutic utilization difficult. To improve this, we employed the human intestinal organoid culturing system, as it mimics intestinal epithelial homeostasis, allowing for differentiation of multiple epithelial cell types. Using a small scale, directed screen, we targeted multiple transcriptional regulators, using small molecules known to control pancreatic and intestinal development, and hormone production. We chose small molecules instead of gene editing tools to avoid the potential pitfall of off-target mutagenesis. We found that inhibition of FoxO1 in our organoid culture led to an increase in EE cell differentiation as assessed by EE-specific gene expression, with a 5-10 fold upregulation in expression of ChgA, NeuroD1, and Neurog3 compared to whole mucosal biopsies (P<0.01 for all targets, n=3 per group). Flow cytometry data showed 6-8% of cells produced CHGA, compared to 0.2% in undifferentiated organoids (P<0.0001, n=3 per group), and the 1% typically seen in the duodenum. We also noted a corresponding increase in the production of EE hormones, including glucose-dependent insulinotropic peptide (GIP), serotonin and somatostatin, by qPCR and immunofluorescence. Analysis of conditioned media using ELISA, compared to undifferentiated organoids, revealed increased serotonin (362.6±52.3 vs 167.5±5.1 ng/mL, P=.0037, n=3 per group) and GIP (5.76±1.31 pg/mL vs undetectable, n=3 per group). Independently, upregulation of GATA4-Nkx2.5 also induced EE cell differentiation and hormone production, although to a lesser extent than FoxO1 inhibition. The exception to this was GIP, which showed increased expression and production with GATA4-Nkx2.5 compared to FoxO1 inhibition (20.8±7.4 vs 5.8±1.3 pg/mL, n=3 per group), with a much larger increase when FoxO1 inhibition was followed by GATA4-Nkx2.5 activation (53.4±4.8 pg/mL, n=3). Of note, all experiments were performed in a minimum of three human lines. Taken together, our data have identified multiple factors, including inhibition of FoxO1 and activation of GATA4-Nkx2.5, that can drive ex vivo human EE cell differentiation, with unique hormone production profiles, when targeted via small molecules. This is a critical first step towards understanding the role of enteroendocrine cells in disease and the development of EE cell-based therapies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Emilia J. Orzechowska ◽  
Takahito Katano ◽  
Agnieszka B. Bialkowska ◽  
Vincent W. Yang

Abstract Gamma radiation is a commonly used adjuvant treatment for abdominally localized cancer. Since its therapeutic potential is limited due to gastrointestinal (GI) syndrome, elucidation of the regenerative response following radiation-induced gut injury is needed to develop a preventive treatment. Previously, we showed that Krüppel-like factor 4 (KLF4) activates certain quiescent intestinal stem cells (ISCs) marked by Bmi1-CreER to give rise to regenerating crypts following γ irradiation. In the current study, we showed that γ radiation-induced expression of p21Waf1/Cip1 in Bmi1-CreER cells is likely mitigated by MUSASHI-1 (MSI1) acting as a negative regulator of p21Waf1/Cip1 mRNA translation, which promotes exit of the Bmi1-CreER cells from a quiescent state. Additionally, Bmi1-specific Klf4 deletion resulted in decreased numbers of MSI1+ cells in regenerating crypts compared to those of control mice. We showed that KLF4 binds to the Msi1 promoter and activates its expression in vitro. Since MSI1 has been shown to be crucial for crypt regeneration, this finding elucidates a pro-proliferative role of KLF4 during the postirradiation regenerative response. Taken together, our data suggest that the interplay among p21Waf1/Cip1, MSI1 and KLF4 regulates Bmi1-CreER cell survival, exit from quiescence and regenerative potential upon γ radiation-induced injury.


2010 ◽  
Vol 12 (4) ◽  
pp. 447-461 ◽  
Author(s):  
Jenn-Rong Yang ◽  
Chia-Hsin Liao ◽  
Cheng-Yoong Pang ◽  
Lynn Ling-Huei Huang ◽  
Yu-Ting Lin ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Haisheng Peng ◽  
Nitya Poovaiah ◽  
Michael Forrester ◽  
Eric Cochran ◽  
Qun Wang

Author(s):  
Helen E. Abud ◽  
Wing Hei Chan ◽  
Thierry Jardé

Epidermal Growth Factor (EGF) has long been known for its role in promoting proliferation of intestinal epithelial cells. EGF is produced by epithelial niche cells at the base of crypts in vivo and is routinely added to the culture medium to support the growth of intestinal organoids ex vivo. The recent identification of diverse stromal cell populations that reside underneath intestinal crypts has enabled the characterization of key growth factor cues supplied by these cells. The nature of these signals and how they are delivered to drive intestinal epithelial development, daily homeostasis and tissue regeneration following injury are being investigated. It is clear that aside from EGF, other ligands of the family, including Neuregulin 1 (NRG1), have distinct roles in supporting the function of intestinal stem cells through the ErbB pathway.


2020 ◽  
Author(s):  
F Pieropan ◽  
AD Rivera ◽  
G Williams ◽  
F Calzolari ◽  
AM Butt ◽  
...  

AbstractOligodendrocytes are the myelin forming cells of the central nervous system (CNS) and are generated from oligodendrocyte progenitor cells (OPCs). Disruption or loss of oligodendrocytes and myelin has devastating effects on CNS function and integrity, which occurs in diverse neurological disorders, including Multiple Sclerosis (MS), Alzheimer’s disease (AD) and neuropsychiatric disorders. Hence, there is a need to develop new therapies that promote oligodendrocyte regeneration and myelin repair. A promising approach is drug repurposing, but most agents have potentially contrasting biological actions depending on the cellular context and their dose-dependent effects on intracellular regulatory pathways. Here, we have used a combined drug connectivity systems biology and neurobiological approach to identify compounds that exert positive and negative effects on oligodendroglia, depending on concentration. Notably, LY294002, a potent inhibitor of PI3K/Akt signalling, was the most highly ranked small molecule for both pro- and anti-oligodendroglial effects. We validated these in silico findings in multiple in vivo and ex vivo neurobiological models and demonstrate that low and high doses of LY294002 have a profoundly bipartite effect on the generation of OPCs and their differentiation into myelinating oligodendrocytes. Finally, we employed transcriptional profiling and signalling pathway activity assays to determine cell-specific mechanisms of action of LY294002 on oligodendrocytes and resolve optimal in vivo conditions required to promote myelin repair. These results demonstrate the power of multifactorial neurobiological and in silico strategies in determining the therapeutic potential of small molecules in neurodegenerative disorders.One-sentence summaryDrug discovery and CNS myelination


Development ◽  
2021 ◽  
pp. dev.194357
Author(s):  
Matthias Godart ◽  
Carla Frau ◽  
Diana Farhat ◽  
Maria Virginia Giolito ◽  
Catherine Jamard ◽  
...  

The thyroid hormone T3 and its nuclear receptor TRα1 control gut development and homeostasis through the modulation of intestinal crypt cell proliferation. Despite increasing data, in depth analysis on their specific action on intestinal stem cells is lacking.By using ex vivo 3D organoid cultures and molecular approaches we observed early responses to T3 involving the T3-metabolizing enzyme Dio1 and the transporter Mct10, accompanied by a complex response of stem cell- and progenitor-enriched genes. Interestingly, specific TRα1 loss-of-function (inducible or constitutive) was responsible for low ex vivo organoid development and impaired stem cell activity. T3-treatment of animals in vivo not only confirmed the positive action of this hormone on crypt cell proliferation but also demonstrated its key action in modulating i) the number of the stem cells, ii) the expression of their specific markers and iii) the commitment of progenitors into lineage-specific differentiation.In conclusion, T3 treatment or TRα1 modulation has a rapid and strong effect on intestinal stem cells, broadening our perspectives in the study of T3/TRα1-dependent signaling in these cells.


Stem Cells ◽  
2008 ◽  
Vol 26 (4) ◽  
pp. 886-893 ◽  
Author(s):  
Xue-Jun Li ◽  
Bao-Yang Hu ◽  
Stefanie A. Jones ◽  
Ying-Sha Zhang ◽  
Timothy LaVaute ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document