scholarly journals MON-726 Modifications of FOXO1 and GATA4-NKX2.5 Signaling Induce Human Enteroendocrine Differentiation

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Daniel Richard Zeve ◽  
Eric Stas ◽  
Manasvi S Shah ◽  
David T Breault

Abstract Enteroendocrine (EE) cells are the most abundant hormone-producing cells in the human body and are vital for metabolism, as well as intestinal and pancreatic function. They have been implicated in the pathogenesis of multiple diseases including diabetes mellitus. Although recent studies have identified multiple signaling pathways (including Wnt, MAPK, BMP and Notch) that can induce low levels of EE cell differentiation, the production of functional human EE cells in vitro remains challenging, making their study and therapeutic utilization difficult. To improve this, we employed the human intestinal organoid culturing system, as it mimics intestinal epithelial homeostasis, allowing for differentiation of multiple epithelial cell types. Using a small scale, directed screen, we targeted multiple transcriptional regulators, using small molecules known to control pancreatic and intestinal development, and hormone production. We chose small molecules instead of gene editing tools to avoid the potential pitfall of off-target mutagenesis. We found that inhibition of FoxO1 in our organoid culture led to an increase in EE cell differentiation as assessed by EE-specific gene expression, with a 5-10 fold upregulation in expression of ChgA, NeuroD1, and Neurog3 compared to whole mucosal biopsies (P<0.01 for all targets, n=3 per group). Flow cytometry data showed 6-8% of cells produced CHGA, compared to 0.2% in undifferentiated organoids (P<0.0001, n=3 per group), and the 1% typically seen in the duodenum. We also noted a corresponding increase in the production of EE hormones, including glucose-dependent insulinotropic peptide (GIP), serotonin and somatostatin, by qPCR and immunofluorescence. Analysis of conditioned media using ELISA, compared to undifferentiated organoids, revealed increased serotonin (362.6±52.3 vs 167.5±5.1 ng/mL, P=.0037, n=3 per group) and GIP (5.76±1.31 pg/mL vs undetectable, n=3 per group). Independently, upregulation of GATA4-Nkx2.5 also induced EE cell differentiation and hormone production, although to a lesser extent than FoxO1 inhibition. The exception to this was GIP, which showed increased expression and production with GATA4-Nkx2.5 compared to FoxO1 inhibition (20.8±7.4 vs 5.8±1.3 pg/mL, n=3 per group), with a much larger increase when FoxO1 inhibition was followed by GATA4-Nkx2.5 activation (53.4±4.8 pg/mL, n=3). Of note, all experiments were performed in a minimum of three human lines. Taken together, our data have identified multiple factors, including inhibition of FoxO1 and activation of GATA4-Nkx2.5, that can drive ex vivo human EE cell differentiation, with unique hormone production profiles, when targeted via small molecules. This is a critical first step towards understanding the role of enteroendocrine cells in disease and the development of EE cell-based therapies.

Author(s):  
Purnima Singh ◽  
Tanmay Mondal ◽  
Kuldeep Kumar ◽  
Kinsuk Das ◽  
N Mahalakshmi ◽  
...  

Induced Pluripotent stem cells (iPSC) have a high ability to renew and differentiate themselves into various lineages and as vehicles of cell based therapy. Stem cell can differentiate under appropriate in vitro and in vivo conditions into different cell types. This study described the establishment of condition for in vitro expression of alpha MHC gene in cardiac differentiated canine iPSC (ciPSC). In vitro differentiation of canine iPSCs via embryoid bodies (EBs) were produced by ‘Hanging Drop’ method. EB’s were differentiated by using IMDM differentiation media: FBS – 10%, NEAA (100X) – 0.5%, Â-Mercaptoethanol- 100mM, Gentamycin- 5µg/ml supplemented with Azacytidine- 0.5µM. During differentiation, EBs were collected on day 4, 6, 8, 12, 16, 20 and 24 for characterization of cardiomyocytes specific marker expression. Total RNA from EBs were extracted by using Trizol method and subsequently cDNA were synthesized. The differentiated cells expressed cardiac specific gene (Alpha MHC) which started from day 6 of differentiation upto day 24 Immunocytochemistry and relative expression of cardiac specific genes revealed that ciPSC have the potential to differentiate into cardiomyocytes which can be used for cardiac tissue regeneration and as disease models for pharmaceutical testing.


Development ◽  
1979 ◽  
Vol 53 (1) ◽  
pp. 367-379
Author(s):  
Marie Dziadek

Inner cell masses (ICMs) were isolated by immunosurgery from giant blastocysts formedby the aggregation of three morulae. A layer of endoderm cells formed on the outer surface of these primary ICMs in vitro. When this layer was removed by immunosurgery, a secondary endoderm layer formed. Alphafetoprotein (AFP) was used as a biochemical marker tocharacterize visceral endoderm formation in these cultured ICMs. The immunoperoxidase reaction on sections of ICMs cultured for intervals up to 120 h in vitro showed that someprimary endoderm cells contained AFP, but these were always in the minority. The secondary endoderm layer, on the other hand, was composed of predominantly AFP-positive cells.Itis concluded that the primary endoderm contains mainly parietal endoderm cells, while the secondary layer contains visceral endoderm cells. A model is proposed for the consecutive differentiation of parietal and visceral endoderm cell types from the ICM of mouseblastocysts.


2020 ◽  
Author(s):  
Daniel Zeve ◽  
Eric Stas ◽  
Xiaolei Yin ◽  
Sarah Dubois ◽  
Manasvi S. Shah ◽  
...  

ABSTRACTEnteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of key transcriptional regulators, GATA4, JNK and FOXO1, known to mediate endodermal development and hormone production, together with directed differentiation of human ISCs. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, and GIP upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Thu T. Duong ◽  
James Lim ◽  
Vidyullatha Vasireddy ◽  
Tyler Papp ◽  
Hung Nguyen ◽  
...  

Recombinant adeno-associated virus (rAAV), produced from a nonpathogenic parvovirus, has become an increasing popular vector for gene therapy applications in human clinical trials. However, transduction and transgene expression of rAAVs can differ acrossin vitroand ex vivo cellular transduction strategies. This study compared 11 rAAV serotypes, carrying one reporter transgene cassette containing a cytomegalovirus immediate-early enhancer (eCMV) and chicken beta actin (CBA) promoter driving the expression of an enhanced green-fluorescent protein (eGFP) gene, which was transduced into four different cell types: human iPSC, iPSC-derived RPE, iPSC-derived cortical, and dissociated embryonic day 18 rat cortical neurons. Each cell type was exposed to three multiplicity of infections (MOI: 1E4, 1E5, and 1E6 vg/cell). After 24, 48, 72, and 96 h posttransduction, GFP-expressing cells were examined and compared across dosage, time, and cell type. Retinal pigmented epithelium showed highest AAV-eGFP expression and iPSC cortical the lowest. At an MOI of 1E6 vg/cell, all serotypes show measurable levels of AAV-eGFP expression; moreover, AAV7m8 and AAV6 perform best across MOI and cell type. We conclude that serotype tropism is not only capsid dependent but also cell type plays a significant role in transgene expression dynamics.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


2005 ◽  
Vol 289 (6) ◽  
pp. G1091-G1099 ◽  
Author(s):  
Kazunobu Nonome ◽  
Xiao-Kang Li ◽  
Terumi Takahara ◽  
Yusuke Kitazawa ◽  
Naoko Funeshima ◽  
...  

Human umbilical cord blood (HUCB) contains stem/progenitor cells, which can differentiate into a variety of cell types. In this study, we investigated whether HUCB cells differentiate into hepatocytes in vitro and in vivo. We also examined whether CD34 could be the selection marker of stem cells for hepatocytes. HUCB cells were obtained from normal full-term deliveries, and CD34+/−cells were further separated. For in vitro study, HUCB cells were cultured for 4 wk, and expressions of liver-specific genes were examined. For the in vivo study, nonobese diabetic/severe combined immunodeficient mice were subjected to liver injury by a Fas ligand-carried adenoviral vector or only radiated. Mice were treated simultaneously with or without cell transplantation of HUCB, CD34+, or CD34−cells. After 4 wk, human-specific gene/protein expression was examined. In the in vitro study, human liver-specific genes were positive after 7 days of culture. The immunofluorescent study showed positive staining of α-fetoprotein, cytokeratin 19, and albumin in round-shaped cells. In the in vivo study, immunohistochemical analysis showed human albumin-positive, hepatocyte-specific antigen-positive cells in mouse livers of the Fas ligand/transplantation group. Fluorescence in situ hybridization analysis using the human Y chromosome also showed positive signals. However, no difference between transplanted cell types was detected. In contrast, immunopositive cells were not detected in the irradiated/transplantation group. The RT-PCR result also showed human hepatocyte-specific gene expressions only in the Fas ligand/transplantation group. HUCB cells differentiated into hepatocyte-like cells in the mouse liver, and liver injury was essential during this process. The differences between CD34+and CD34−cells were not observed in human hepatocyte-specific expression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Molly Javier Uyeda ◽  
Robert A. Freeborn ◽  
Brandon Cieniewicz ◽  
Rosa Romano ◽  
Ping (Pauline) Chen ◽  
...  

Type 1 regulatory T (Tr1) cells are subset of peripherally induced antigen-specific regulatory T cells. IL-10 signaling has been shown to be indispensable for polarization and function of Tr1 cells. However, the transcriptional machinery underlying human Tr1 cell differentiation and function is not yet elucidated. To this end, we performed RNA sequencing on ex vivo human CD49b+LAG3+ Tr1 cells. We identified the transcription factor, BHLHE40, to be highly expressed in Tr1 cells. Even though Tr1 cells characteristically produce high levels of IL-10, we found that BHLHE40 represses IL-10 and increases IFN-γ secretion in naïve CD4+ T cells. Through CRISPR/Cas9-mediated knockout, we determined that IL10 significantly increased in the sgBHLHE40-edited cells and BHLHE40 is dispensable for naïve CD4+ T cells to differentiate into Tr1 cells in vitro. Interestingly, BHLHE40 overexpression induces the surface expression of CD49b and LAG3, co-expressed surface molecules attributed to Tr1 cells, but promotes IFN-γ production. Our findings uncover a novel mechanism whereby BHLHE40 acts as a regulator of IL-10 and IFN-γ in human CD4+ T cells.


2020 ◽  
Author(s):  
Ailiang Zhang ◽  
Helena Paidassi ◽  
Adam Lacy-Hulbert ◽  
John Savill

In the mammalian gut CD103+ve myeloid DCs are known to suppress inflammation threatened by luminal bacteria, but stimuli driving DC precursor differentiation towards this beneficial phenotype are incompletely understood. We isolated CD11+ve DCs from mesenteric lymph nodes (MLNs) of healthy mice; CD103+ve DCs were 8-24 folds more likely than CD103-ve DCs to exhibit extensive of prior phagocytosis of apoptotic intestinal epithelial cells. However, CD103+ve and CD103-ve MLN DCs exhibited similar ex vivo capacity to ingest apoptotic cells, indicating that apoptotic cells might drive immature DC differentiation towards the CD103+ve phenotype. When cultured with apoptotic cells, myeloid DC precursors isolated from murine bone marrow and characterised as lineage-ve CD103-ve, displayed enhanced expression of CD103 and β8 integrin and acquired increased capacity to induce Tregs after 7d in vitro. However, DC precursors isolated from α v -tie2 mice lacking α v integrins in the myeloid line exhibited reduced binding of apoptotic cells and complete deficiency in the capacity of apoptotic cells and/or latent TGF-β1 to enhance CD103 expression in culture, whereas active TGF-β1 increased DC precursor CD103 expression irrespective of α v expression. Fluorescence microscopy revealed clustering of α v integrin chains and latent TGF-β1 at points of contact between DC precursors and apoptotic cells. We conclude that myeloid DC precursors can deploy α v integrin to orchestrate binding of apoptotic cells, activation of latent TGF-β1 and acquisition of the immunoregulatory CD103+ve β8+ve DC phenotype. This implies that a hitherto unrecognised consequence of apoptotic cell interaction with myeloid phagocytes is programming that prevents inflammation.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Sandeep B Shelar ◽  
Madhusudhanan Narasimhan ◽  
Gobinath Shanmugam ◽  
Neelu E Vargees ◽  
Ramasamy Sakthivel ◽  
...  

Background: Progressive accumulation of misfolded or unfolded proteins is a symbol of impaired proteostasis and proteotoxicity. Such a chronic proteotoxicity is amenable to cell types that are post mitotically matured with lack of further differentiation or proliferation. Our recent discovery using a mouse model of familial human cardiac disease displayed protuberant shift in the redox state towards reductive stress (RS) in association with accumulation of toxic protein aggregates. Further, sustained trans-activation of Nrf2/antioxidant signaling caused RS in the myopathy hearts. Accordingly, we hypothesized that whether profound activation of Nrf2/antioxidant signaling and subsequent RS may cause pathological remodeling in cardiomyocyte. The aim of this study was to investigate the effect of sustained pharmacological activation of Nrf2 on cardiac remodeling. Methods: HL1 cardiomyocytes were used as an in vitro model to study the RS-mediated cardiac remodeling. They were treated with 2-10 μM of potential Nrf2-inducers; sulforaphane (SF), di-methyl fumarate (DMF) and novel small molecules (C-38, C-50, C-63 and C-66) to establish RS by sustained activation of Nrf2/antioxidant signaling. Next, we investigated the implications of RS in cardiomyocyte remodeling by analyzing transcriptional and translational mechanisms using immunoblotting, qPCR, immunofluorescence, GSH and NADPH redox measurements in HL1 cells. Results: Dose dependent effects for individual small molecules including known Nrf2 inducers (SF and DMF) revealed distinct pro-reductive and reductive intracellular (i.e. reductive stress) environments. In fact, the obligatory activation of Nrf2 signaling was associated with significant upregulation of antioxidant enzymes and small molecular thiols including glutathione (GSH). Surprisingly, while pro-reductive condition in HL1 cells was subdued, the RS induced cardiomyocyte hypertrophy was evident from microscopic examination and molecular signature (increased expression of ANF and BNF) after 24-48 hrs of Nrf2 activation. Conclusion: In summary, the chemical induced sustained activation of Nrf2 leading to formation of reductive stress showed hypertrophic remodeling in HL1 cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document