scholarly journals Ultra-rapid detection of SARS-CoV-2 in public workspace environments

Author(s):  
Ozlem Yaren ◽  
Jacquelyn McCarter ◽  
Nikhil Phadke ◽  
Kevin M Bradley ◽  
Benjamin Overton ◽  
...  

Managing the pandemic caused by SARS-CoV-2 requires new capabilities in testing, including the possibility of identifying, in minutes, infected individuals as they enter spaces where they must congregate in a functioning society, including workspaces, schools, points of entry, and commercial business establishments. Here, the only useful tests (a) require no sample transport, (b) require minimal sample manipulation, (c) can be performed by unlicensed individuals, (d) return results on the spot in much less than one hour, and (e) cost no more than a few dollars. The sensitivity need not be as high as normally required by the FDA for screening asymptomatic carriers (as few as 10 virions per sample), as these viral loads are almost certainly not high enough for an individual to present a risk for forward infection. This allows tests specifically useful for this pandemic to trade-off unneeded sensitivity for necessary speed, simplicity, and frugality. In some studies, it was shown that viral load that creates forward-infection risk may exceed 105 virions per milliliter, easily within the sensitivity of an RNA amplification architecture, but unattainable by antibody-based architectures that simply target viral antigens. Here, we describe such a test based on a displaceable probe loop amplification architecture.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0240524
Author(s):  
Ozlem Yaren ◽  
Jacquelyn McCarter ◽  
Nikhil Phadke ◽  
Kevin M. Bradley ◽  
Benjamin Overton ◽  
...  

Managing the pandemic caused by SARS-CoV-2 requires new capabilities in testing, including the possibility of identifying, in minutes, infected individuals as they enter spaces where they must congregate in a functioning society, including workspaces, schools, points of entry, and commercial business establishments. Here, the only useful tests (a) require no sample transport, (b) require minimal sample manipulation, (c) can be performed by unlicensed individuals, (d) return results on the spot in much less than one hour, and (e) cost no more than a few dollars. The sensitivity need not be as high as normally required by the FDA for screening asymptomatic carriers (as few as 10 virions per sample), as these viral loads are almost certainly not high enough for an individual to present a risk for forward infection. This allows tests specifically useful for this pandemic to trade-off unneeded sensitivity for necessary speed, simplicity, and frugality. In some studies, it was shown that viral load that creates forward-infection risk may exceed 105 virions per milliliter, easily within the sensitivity of an RNA amplification architecture, but unattainable by antibody-based architectures that simply target viral antigens. Here, we describe such a test based on a displaceable probe loop amplification architecture.


2020 ◽  
Author(s):  
Pedro M. de Oliveira ◽  
Leo C. C. Mesquita ◽  
Savvas Gkantonas ◽  
Andrea Giusti ◽  
Epaminondas Mastorakos

By modelling the evaporation and settling of droplets emitted during respiratory releases and using previous measurements of droplet size distributions and SARS-CoV-2 viral load, estimates of the evolution of the liquid mass and the number of viral copies suspended were performed as a function of time from the release. The settling times of a droplet cloud and its suspended viral dose are significantly affected by the droplet composition. The aerosol (defined as droplets smaller than 5 μm resulting from 30 seconds of continued speech has o(1h) settling time and a viable viral dose an order-of-magnitude higher than in a short cough. The time-of-flight to reach 2m is only a few seconds resulting in a viral dose above the minimum required for infection, implying that physical distancing in the absence of ventilation is not sufficient to provide safety for long exposure times. The suspended aerosol emitted by continuous speaking for 1 hour in a poorly ventilated room gives 0.1-11% infection risk for initial viral loads of 10^8-10^10 copies/ml, respectively, decreasing to 0.03-3% for 10 air changes per hour by ventilation. The present results provide quantitative estimates useful for the development of physical-distancing and ventilation controls.


Author(s):  
P. M. de Oliveira ◽  
L. C. C. Mesquita ◽  
S. Gkantonas ◽  
A. Giusti ◽  
E. Mastorakos

By modelling the evaporation and settling of droplets emitted during respiratory releases and using previous measurements of droplet size distributions and SARS-CoV-2 viral load, estimates of the evolution of the liquid mass and the number of viral copies suspended were performed as a function of time from the release. The settling times of a droplet cloud and its suspended viral dose are significantly affected by the droplet composition. The aerosol (defined as droplets smaller than 5  μ m) resulting from 30 s of continued speech has O(1 h) settling time and a viable viral dose an order-of-magnitude higher than in a short cough. The time-of-flight to reach 2 m is only a few seconds resulting in a viral dose above the minimum required for infection, implying that physical distancing in the absence of ventilation is not sufficient to provide safety for long exposure times. The suspended aerosol emitted by continuous speaking for 1 h in a poorly ventilated room gives 0.1–11% infection risk for initial viral loads of 10 8 – 10 10   copies ml l − l , respectively, decreasing to 0.03–3% for 10 air changes per hour by ventilation. The present results provide quantitative estimates useful for the development of physical distancing and ventilation controls.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S325-S326
Author(s):  
Lacy Simons ◽  
Ramon Lorenzo-Redondo ◽  
Hannah Nam ◽  
Scott C Roberts ◽  
Michael G Ison ◽  
...  

Abstract Background The rapid spread of SARS-CoV-2, the causative agent of Coronavirus disease 2019 (COVID-19), has been accompanied by the emergence of viral mutations, some of which may have distinct virological and clinical consequences. While whole genome sequencing efforts have worked to map this viral diversity at the population level, little is known about how SARS-CoV-2 may diversify within a host over time. This is particularly important for understanding the emergence of viral resistance to therapeutic interventions and immune pressure. The goal of this study was to assess the change in viral load and viral genome sequence within patients over time and determine if these changes correlate with clinical and/or demographic parameters. Methods Hospitalized patients admitted to Northwestern Memorial Hospital with a positive SARS-CoV-2 test were enrolled in a longitudinal study for the serial collection of nasopharyngeal specimens. Swabs were administered to patients by hospital staff every 4 ± 1 days for up to 32 days or until the patients were discharged. RNA was extracted from each specimen and viral loads were calculated by quantitative reverse transcriptase PCR (qRT-PCR). Specimens with qRT-PCR cycle threshold values less than or equal to 30 were subject to whole viral genome sequencing by reverse transcription, multiplex PCR, and deep sequencing. Variant populations sizes were estimated and subject to phylogenetic analysis relative to publicly available SARS-CoV-2 sequences. Sequence and viral load data were subsequently correlated to available demographic and clinical data. Results 60 patients were enrolled from March 26th to June 20th, 2020. We observed an overall decrease in nasopharyngeal viral load over time across all patients. However, the temporal dynamics of viral load differed on a patient-by-patient basis. Several mutations were also observed to have emerged within patients over time. Distribution of SARS-CoV-2 viral loads in serially collected nasopharyngeal swabs in hospitalized adults as determined by qRT-PCR. Samples were collected every 4 ± 1 days (T#1–8) and viral load is displayed by log(copy number). Conclusion These data indicate that SARS-CoV-2 viral loads in the nasopharynx decrease over time and that the virus can accumulate mutations during replication within individual patients. Future studies will examine if some of these mutations may provide fitness advantages in the presence of therapeutic and/or immune selective pressures. Disclosures Michael G. Ison, MD MS, AlloVir (Consultant)


2015 ◽  
Vol 52 (4) ◽  
pp. 699-704 ◽  
Author(s):  
Juanita M. Hinson ◽  
Sonia Davé ◽  
Scott S. McMenamy ◽  
Kirti Davé ◽  
Michael J. Turell

2012 ◽  
Vol 1 (3) ◽  
pp. 137-145
Author(s):  
Gui-lin Yang ◽  
Ying-xia Liu ◽  
Mu-tong Fang ◽  
Wei-long Liu ◽  
Xin-chun Chen ◽  
...  

Abstract Objective To explore whether age, disease severity, cytokines and lymphocytes in H1N1 influenza A patients correlate with viral load and clearance. Methods Total of 70 mild and 16 severe patients infected with H1N1 influenza A virus were enrolled in this study. Results It was found that the patients under 14 years old and severe patients displayed significantly higher viral loads and prolonged viral shedding periods compared with the patients over 14 years old and mild patients, respectively (P < 0.05). Moreover, the patients under 14 years old and severe patients displayed significantly lower Th17 cell frequency than the patients over 14 years old and mild patients (P < 0.01). The viral shedding period inversely correlated with the frequency of IL-17+IFN-γ-CD4+ T cells. Additionally, the decreased concentration of serum TGF-β correlated with the decreased frequency of IL-17+IFN-γ-CD4+ T cells. Conclusions Both younger and severe patients are associated with higher viral loads and longer viral shedding periods, which may partially be attributed to the impaired Th17 cell response.


BMJ ◽  
2021 ◽  
pp. n1637 ◽  
Author(s):  
Marta García-Fiñana ◽  
David M Hughes ◽  
Christopher P Cheyne ◽  
Girvan Burnside ◽  
Mark Stockbridge ◽  
...  

Abstract Objective To assess the performance of the SARS-CoV-2 antigen rapid lateral flow test (LFT) versus polymerase chain reaction testing in the asymptomatic general population attending testing centres. Design Observational cohort study. Setting Community LFT pilot at covid-19 testing sites in Liverpool, UK. Participants 5869 asymptomatic adults (≥18 years) voluntarily attending one of 48 testing sites during 6-29 November 2020. Interventions Participants were tested using both an Innova LFT and a quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) test based on supervised self-administered swabbing at testing sites. Main outcome measures Sensitivity, specificity, and predictive values of LFT compared with RT-qPCR in an epidemic steady state of covid-19 among adults with no classic symptoms of the disease. Results Of 5869 test results, 22 (0.4%) LFT results and 343 (5.8%) RT-qPCR results were void (that is, when the control line fails to appear within 30 minutes). Excluding the void results, the LFT versus RT-qPCR showed a sensitivity of 40.0% (95% confidence interval 28.5% to 52.4%; 28/70), specificity of 99.9% (99.8% to 99.99%; 5431/5434), positive predictive value of 90.3% (74.2% to 98.0%; 28/31), and negative predictive value of 99.2% (99.0% to 99.4%; 5431/5473). When the void samples were assumed to be negative, a sensitivity was observed for LFT of 37.8% (26.8% to 49.9%; 28/74), specificity of 99.6% (99.4% to 99.8%; 5431/5452), positive predictive value of 84.8% (68.1% to 94.9%; 28/33), and negative predictive value of 93.4% (92.7% to 94.0%; 5431/5814). The sensitivity in participants with an RT-qPCR cycle threshold (Ct) of <18.3 (approximate viral loads >10 6 RNA copies/mL) was 90.9% (58.7% to 99.8%; 10/11), a Ct of <24.4 (>10 4 RNA copies/mL) was 69.4% (51.9% to 83.7%; 25/36), and a Ct of >24.4 (<10 4 RNA copies/mL) was 9.7% (1.9% to 23.7%; 3/34). LFT is likely to detect at least three fifths and at most 998 in every 1000 people with a positive RT-qPCR test result with high viral load. Conclusions The Innova LFT can be useful for identifying infections among adults who report no symptoms of covid-19, particularly those with high viral load who are more likely to infect others. The number of asymptomatic adults with lower Ct (indicating higher viral load) missed by LFT, although small, should be considered when using single LFT in high consequence settings. Clear and accurate communication with the public about how to interpret test results is important, given the chance of missing some cases, even at high viral loads. Further research is needed to understand how infectiousness is reflected in the viral antigen shedding detected by LFT versus the viral loads approximated by RT-qPCR.


2000 ◽  
Vol 11 (3) ◽  
pp. 193-195
Author(s):  
D Ivens ◽  
G Brook

In order to determine if antiretroviral prescribing for patients with HIV infection attending the Central Middlesex Hospital is according to current UK guidelines and effective at reducing the serum HIV viral load, 71 case notes were reviewed. All patients eligible for treatment according to the British HIV Association (BHIVA) guidelines were currently being offered triple therapy. The most recent serum HIV viral loads of patients taking at least 3 antiretrovirals were undetectable in 75% of the 20 patients on their first established regimen and 36% of 14 patients who had failed at least one drug according to previous surrogate marker results. Such work allows an individual clinic to monitor its antiretroviral prescribing practices in the face of constantly updated information and guidelines.


Author(s):  
Teppei Sakano ◽  
Mitsuyoshi Urashima ◽  
Hiroyuki Takao ◽  
Kohei Takeshita ◽  
Hiroe Kobashi ◽  
...  

In the coronavirus disease 2019 (COVID-19) pandemic, more than half of the cases of transmission may occur via asymptomatic individuals, which makes it difficult to contain. However, whether viral load in the throat during admission is different between asymptomatic and symptomatic patients is not well known. By conducting a prospective cohort study of patients with asymptomatic or mild COVID-19, cycle threshold (Ct) values of the polymerase chain reaction test for COVID-19 were examined every other day during admission. The Ct values during admission increased more steadily in symptomatic patients and febrile patients than in asymptomatic patients, with significance (p = 0.01 and p = 0.004, respectively), although the Ct values as a whole were not significantly different between the two groups. Moreover, the Ct values as a whole were higher in patients with dysosmia/dysgeusia than in those without it (p = 0.02), whereas they were lower in patients with a headache than those without (p = 0.01). Patients who were IgG-positive at discharge maintained higher Ct values, e.g., more than 35, during admission than those with IgG-negative (p = 0.03). Assuming that viral load and Ct values are negatively associated, the viral loads as a whole and their changes by time may be different by symptoms and immune reaction, i.e., IgG-positive at discharge.


Author(s):  
Susan Dolan ◽  
Jean Mulcahy Levy ◽  
Angla Moss ◽  
Kelly Pearce ◽  
Samuel Dominguez ◽  
...  

Introduction/Objectives: We evaluated the length of time immunocompromised children (ICC) remain positive for SARS-CoV-2, identified factors associated with viral persistence and determined cycle threshold (CT) values of children with viral persistence as a surrogate of viral load. Methods: We conducted a retrospective cohort study of ICC at a pediatric hospital from March 2020-2021. Immunocompromised status was defined as primary, secondary or acquired due to medical comorbidities/immunosuppressive treatment. The primary outcome was time to first-of-two consecutive negative SARS-CoV-2 Polymerase chain reaction (PCR) tests at least 24 hours apart. Testing of sequential clinical specimens from the same subject was conducted using the Centers for Disease Control (CDC) 2019-nCoV Real-Time RT-PCR Diagnostic Panel assay. Descriptive statistics, Kaplan-Meier curve median event times and log-rank-sum tests were used to compare outcomes between groups. Results: Ninety-one children met inclusion criteria. Median age was 15.5 years (IQR 8-18 yrs), 64% were male, 58% were white, and 43% were Hispanic/Latinx. Most (67%) were tested in outpatient settings and 58% were asymptomatic. The median time to two negative tests was 42 days (IQR 25.0,55.0), with no differences in median time by illness presentation or level of immunosuppression. Seven children had >1 sample available for repeat testing, and 5/7 (71%) children had initial CT values of <30, (moderate to high viral load); 4 children had CT values of <30 3-4 weeks later, suggesting persistent moderate to high viral loads. Conclusions: Most ICC with SARS-CoV-2 infection had mild disease, with prolonged viral persistence >6 weeks and moderate to high viral load.


Sign in / Sign up

Export Citation Format

Share Document