scholarly journals Silencing of ATP synthase β reduces phytoplasma multiplication in the leafhopper vector Euscelidius variegatus

2020 ◽  
Author(s):  
Luciana Galetto ◽  
Simona Abbà ◽  
Marika Rossi ◽  
Matteo Ripamonti ◽  
Sabrina Palmano ◽  
...  

AbstractThe leafhopper Euscelidius variegatus is a natural vector of the chrysanthemum yellows phytoplasma (CYp) and a laboratory vector of the Flavescence dorée phytoplasma (FDp). Previous studies indicated a crucial role for insect ATP synthase α and β subunits during phytoplasma infection of the vector species. Gene silencing of ATP synthase β was obtained by injection of specific dsRNAs in E. variegatus. Here we present the systemic and long-lasting nature of such silencing, its effects on the small RNA profile, the significant reduction of the corresponding protein expression, and the impact on phytoplasma acquisition capability. The specific transcript expression was silenced at least up to 37 days post injection with an average reduction of 100 times in insects injected with dsRNAs targeting ATP synthase β (dsATP) compared with those injected with dsRNAs targeting green fluorescent protein (dsGFP), used as negative controls. Insects injected either with dsATP or dsGFP successfully acquired CYp and FDp during feeding on infected plants. However, the average phytoplasma amount in dsATP insects was significantly lower than that measured in dsGFP specimens, indicating a probable reduction of the pathogen multiplication rate when ATP synthase β was silenced. The role of the insect ATP synthase β during phytoplasma infection process is discussed.

2001 ◽  
Vol 64 (3) ◽  
pp. 310-314 ◽  
Author(s):  
STEVEN PAO ◽  
CRAIG L. DAVIS ◽  
MICKEY E. PARISH

Studies were conducted to evaluate the infiltration of dye and bacteria into the interior of orange fruit and the impact of possible infiltration on achieving a 5-log microbial reduction during fresh juice processing. Fresh orange fruit were treated at the stem end area with dye and either Salmonella Rubislaw or Escherichia coli strains expressing green fluorescent protein. Microscopic images showed that bacterial contaminants localized at the surface or near surface areas that may be sanitized by surface treatments. Dye infiltration was not a reliable indicator of bacterial penetration in citrus fruit. To quantify the reduction of bacterial contamination, orange fruit were inoculated with E. coli and processed with and without hot water treatments. Greater than 5-log reductions were achieved in juice extracted from fruit immersed in hot water for 1 or 2 min at 80°C, in comparison to the E. coli level detected in the control juice obtained by homogenization of inoculated fruit.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 631 ◽  
Author(s):  
Stephen Hayes ◽  
Jennifer Mahony ◽  
Renaud Vincentelli ◽  
Laurie Ramond ◽  
Arjen Nauta ◽  
...  

With the availability of an increasing number of 3D structures of bacteriophage components, combined with powerful in silico predictive tools, it has become possible to decipher the structural assembly and functionality of phage adhesion devices. In the current study, we examined 113 members of the 936 group of lactococcal siphophages, and identified a number of Carbohydrate Binding Modules (CBMs) in the neck passage structure and major tail protein, on top of evolved Dit proteins, as recently reported by us. The binding ability of such CBM-containing proteins was assessed through the construction of green fluorescent protein fusion proteins and subsequent binding assays. Two CBMs, one from the phage tail and another from the neck, demonstrated definite binding to their phage-specific host. Bioinformatic analysis of the structural proteins of 936 phages reveals that they incorporate binding modules which exhibit structural homology to those found in other lactococcal phage groups and beyond, indicating that phages utilize common structural “bricks” to enhance host binding capabilities. The omnipresence of CBMs in Siphophages supports their beneficial role in the infection process, as they can be combined in various ways to form appendages with different shapes and functionalities, ensuring their success in host detection in their respective ecological niches.


2011 ◽  
Vol 24 (11) ◽  
pp. 1359-1371 ◽  
Author(s):  
Katia Bonaldi ◽  
Daniel Gargani ◽  
Yves Prin ◽  
Joel Fardoux ◽  
Djamel Gully ◽  
...  

Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein–labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.


2002 ◽  
Vol 1 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Megan Guziewicz ◽  
Toni Vitullo ◽  
Bethany Simmons ◽  
Rebecca Eustance Kohn

The goal of this laboratory exercise is to increase student understanding of the impact of nervous system function at both the organismal and cellular levels. This inquiry-based exercise is designed for an undergraduate course examining principles of cell biology. After observing the movement of Caenorhabditis elegans with defects in their nervous system, students examine the structure of the nervous system to categorize the type of defect. They distinguish between defects in synaptic vesicle transport and defects in synaptic vesicle fusion with membranes. The synaptic vesicles are tagged with green fluorescent protein (GFP), simplifying cellular analysis. The expected outcome of this experiment is that students will better understand the concepts of vesicle transport, neurotransmitter release, GFP, and the relation between the nervous system and behavior.


2000 ◽  
Vol 352 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Carlo M. Di LIEGRO ◽  
Marianna BELLAFIORE ◽  
José M. IZQUIERDO ◽  
Anja RANTANEN ◽  
José M. CUEZVA

Recent findings have indicated that the 3´-untranslated region (3´-UTR) of the mRNA encoding the β-catalytic subunit of the mitochondrial H+-ATP synthase has an in vitro translation-enhancing activity (TEA) [Izquierdo and Cuezva, Mol. Cell. Biol. (1997) 17, 5255–5268; Izquierdo and Cuezva, Biochem. J. (2000) 346, 849–855]. In the present work, we have expressed chimaeric plasmids that encode mRNA variants of green fluorescent protein in normal rat kidney and liver clone 9 cells to determine whether the 3´-UTRs of nuclear-encoded mRNAs involved in the biogenesis of mitochondria have an intrinsic TEA. TEA is found in the 3´-UTR of the mRNAs encoding the α- and β-subunits of the rat H+-ATP synthase complex, as well as in subunit IV of cytochrome c oxidase. No TEA is present in the 3´-UTR of the somatic mRNA encoding rat mitochondrial transcription factor A. Interestingly, the TEA of the 3´-UTR of mRNAs of oxidative phosphorylation is different, depending upon the cell type analysed. These data provide the first in vivo evidence of a novel cell-specific mechanism for the control of the translation of mRNAs required in mitochondrial function.


2021 ◽  
Vol 118 (37) ◽  
pp. e2024893118
Author(s):  
Laura Salavessa ◽  
Thibault Lagache ◽  
Valérie Malardé ◽  
Alexandre Grassart ◽  
Jean-Christophe Olivo-Marin ◽  
...  

The interleukin-2 receptor (IL-2R) is a cytokine receptor essential for immunity that transduces proliferative signals regulated by its uptake and degradation. IL-2R is a well-known marker of clathrin-independent endocytosis (CIE), a process devoid of any coat protein, raising the question of how the CIE vesicle is generated. Here, we investigated the impact of IL-2Rγ clustering in its endocytosis. Combining total internal reflection fluorescence (TIRF) live imaging of a CRISPR-edited T cell line endogenously expressing IL-2Rγ tagged with green fluorescent protein (GFP), with multichannel imaging, single-molecule tracking, and quantitative analysis, we were able to decipher IL-2Rγ stoichiometry at the plasma membrane in real time. We identified three distinct IL-2Rγ cluster populations. IL-2Rγ is secreted to the cell surface as a preassembled small cluster of three molecules maximum, rapidly diffusing at the plasma membrane. A medium-sized cluster composed of four to six molecules is key for IL-2R internalization and is promoted by interleukin 2 (IL-2) binding, while larger clusters (more than six molecules) are static and inefficiently internalized. Moreover, we identified membrane cholesterol and the branched actin cytoskeleton as key regulators of IL-2Rγ clustering and IL-2–induced signaling. Both cholesterol depletion and Arp2/3 inhibition lead to the assembly of large IL-2Rγ clusters, arising from the stochastic interaction of receptor molecules in close correlation with their enhanced lateral diffusion at the membrane, thus resulting in a default in IL-2R endocytosis. Despite similar clustering outcomes, while cholesterol depletion leads to a sustained IL-2–dependent signaling, Arp2/3 inhibition prevents signal initiation. Taken together, our results reveal the importance of cytokine receptor clustering for CIE initiation and signal transduction.


2012 ◽  
Vol 25 (10) ◽  
pp. 1314-1325 ◽  
Author(s):  
S. Kirsten ◽  
A. Navarro-Quezada ◽  
D. Penselin ◽  
C. Wenzel ◽  
A. Matern ◽  
...  

The barley pathogen Rhynchosporium commune secretes necrosis-inducing proteins NIP1, NIP2, and NIP3. Expression analysis revealed that NIP1 transcripts appear to be present in fungal spores already, whereas NIP2 and NIP3 are synthesized after inoculation of host plants. To assess the contribution of the three effector proteins to disease development, deletion mutants were generated. The development of these fungal mutants on four barley cultivars was quantified in comparison with that of the parent wild-type strain and with two fungal strains failing to secrete an “active” NIP1 avirulence protein, using quantitative polymerase chain reaction as well as microscopic imaging after fungal green fluorescent protein tagging. The impact of the three deletions varied quantitatively depending on the host genotype, suggesting that the activities of the fungal effectors add up to produce stronger growth patterns and symptom development. Alternatively, recognition events of differing intensities may be converted into defense gene expression in a quantitative manner.


2010 ◽  
Vol 76 (18) ◽  
pp. 6119-6127 ◽  
Author(s):  
Putthapoom Lumjiaktase ◽  
Claudio Aguilar ◽  
Tom Battin ◽  
Kathrin Riedel ◽  
Leo Eberl

ABSTRACT Many bacteria utilize quorum sensing (QS) systems to communicate with each other by means of the production, release, and response to signal molecules. N-Acyl homoserine lactone (AHL)-based QS systems are particularly widespread among the Proteobacteria, in which they regulate various functions. It has become evident that AHLs can also serve as signals for interspecies communication. However, knowledge on the impact of AHLs for the ecology of bacteria in their natural habitat is scarce, due mainly to the lack of tools that allow the study of QS in bacterial communities in situ. Here, we describe the construction of self-mobilizable green fluorescent protein (GFP)-based AHL sensors that utilize the conjugation and replication properties of the broad-host-range plasmid RP4. We show that these novel AHL sensor plasmids can be easily transferred to different bacterial species by biparental mating and that they give rise to green fluorescent cells in case the recipient is an AHL producer. We also demonstrate that these sensor plasmids are capable of self-spreading within mixed biofilms and are a suitable tool for the identification of AHL-producing bacteria in lake sediment.


2009 ◽  
Vol 99 (2) ◽  
pp. 152-159 ◽  
Author(s):  
E. Gamliel-Atinsky ◽  
S. Freeman ◽  
A. Sztejnberg ◽  
M. Maymon ◽  
R. Ochoa ◽  
...  

The role of the mango bud mite, Aceria mangiferae, in carrying conidia of Fusarium mangiferae, vectoring them into potential infection sites, and assisting fungal infection and dissemination was studied. Following the mite's exposure to a green fluorescent protein-marked isolate, conidia were observed clinging to the mite's body. Agar plugs bearing either bud mites or the pathogen were placed on leaves near the apical buds of potted mango plants. Conidia were found in bud bracts only when both mites and conidia were co-inoculated on the plant, demonstrating that the mite vectored the conidia into the apical bud. Potted mango plants were inoculated with conidia in the presence or absence of mites. Frequency and severity of infected buds were significantly higher in the presence of mites, revealing their significant role in the fungal infection process. Conidia and mite presence were monitored with traps in a diseased orchard over a 2-year period. No windborne bud mites bearing conidia were found; however, high numbers of windborne conidia were detected in the traps. These results suggest that A. mangiferae can carry and vector conidia between buds and assist in fungal penetration but does not play a role in the aerial dissemination of conidia between trees.


Sign in / Sign up

Export Citation Format

Share Document