scholarly journals The effect of salt on the dynamics of CoV-2 RBD at ACE2

2020 ◽  
Author(s):  
E. K. Peter ◽  
A. Schug

ABSTRACTIn this article, we investigate the effect of electrolytes on the stability of the complex between the coronavirus type 2 spike protein receptor domain (CoV-2 RBD) and ACE2, which plays an important role in the activation cascade at the viral entry of CoV-2 into human cells. At the cellular surface, electrolytes play an important role, especially in the interaction of proteins near the membrane surface. Additionally, the binding interface of the CoV-2 RBD - ACE2 complex is highly hydrophilic. We simulated the CoV-2 RBD - ACE2 complex at varying salt concentrations over the concentration range from 0.03 M to 0.3 M of calcium and sodium chloride over an individual simulation length of 750 ns in 9 independent simulations (6.75 µs total). We observe that the CoV-2 RBD - ACE2 complex is stabilized independent of the salt concentration. We identify a strong negative electrostatic potential at the N-terminal part of CoV-2 RBD and we find that CoV-2 RBD binds even stronger at higher salt concentrations. We observe that the dynamics of the N-terminal part of CoV-2 RBD stabilize the protein complex leading to strong collective motions and a stable interface between CoV-2 RBD and ACE2. We state that the sequence of CoV-2 RBD might be optimized for a strong binding to ACE2 at varying salt concentrations at the cellular surface, which acts as a key component in the activation of CoV-2 for its viral entry.SIGNIFICANCEA novel coronavirus, coronavirus type 2 (CoV-2), was identified as primary cause for a worldwide pandemic of the severe acute respiratory syndrome (SARS CoV-2). The CoV-2 spike protein is a major target for the development of a vaccine and potential strategies to inhibit the viral entry into human cells. At the cellular surface, CoV-2 activation involves the direct interaction between ACE2 and CoV-2 RBD. At the cellular surface, electrolytes play an important role, especially in the interaction of proteins near the membrane surface. We thus investigate the effect of ion conditions on the interaction of the CoV-2 RBD - ACE2 complex and find stabilizing effects. We speculate that CoV-2 RBD is optimized for strong binding to ACE2 at varying salt concentrations.

Author(s):  
E. K. Peter ◽  
A. Schug

ABSTRACTIn this paper, we investigate the molecular assembly processes of a Coronavirus Spike protein fragment, the hexapeptide YKYRYL on the ACE2 receptor and its inhibitory effect on the aggregation and activation of the CoV-2 spike receptor protein at the same receptor protein. In agreement with an experimental study, we find a high affinity of the hexapeptide to the binding interface between the spike receptor protein and ACE2, which we investigate using 20 independent equilibrium MD simulations over a total of 1 μs and a 200 ns enhanced MD simulation. We then evaluate the effect of the hexapeptide on the aggregation process of the spike receptor protein to ACE2 in long-time enhanced MD simulations. In that set of simulations, we find that the spike receptor protein does not bind to ACE2 with the binding motif shown in experiments, but it rotates due to an electrostatic repulsion and forms a hydrophobic interface with ACE2. Surprisingly, we observe that the hexapeptide binds to the spike receptor domain, which has the effect that this protein only weakly attaches to ACE2, so that the activation of the spike protein receptor might be inhibited in this case. Our results indicate that the hexapeptide might be a possible treatment option which prevents the viral activation through the inhibition of the interaction between ACE2 and the spike receptor protein.SIGNIFICANCEA novel coronavirus, CoV-19 and a later phenotype CoV-2 were identified as primary cause for a severe acute respiratory syndrome (SARS CoV-2). The spike (S) protein of CoV-2 is one target for the development of a vaccine to prevent the viral entry into human cells. The inhibition of the direct interaction between ACE2 and the S-protein could provides a suitable strategy to prevent the membrane fusion of CoV-2 and the viral entry into human cells. Using MD simulations, we investigate the assembly process of a Coronavirus Spike protein fragment, the hexapeptide YKYRYL on the ACE2 receptor and its inhibitzory effect on the aggregation and activation of the CoV-2 spike receptor protein at the same receptor protein.


Author(s):  
Emily Shang ◽  
Paul Axelsen

SARS-CoV-2 attaches to the surface of susceptible cells through extensive interactions between the receptor binding domain (RBD) of its spike protein and angiotensin converting enzyme type 2 (ACE2) anchored in cell membranes. To investigate whether naturally occurring mutations in the spike protein are able to prevent antibody binding, yet while maintaining the ability to bind ACE2 and viral infectivity, mutations in the spike protein identified in cases of human infection were mapped to the crystallographically-determined interfaces between the spike protein and ACE2 (PDB entry 6M0J), antibody CC12.1 (PDB entry 6XC2), and antibody P2B-2F6 (PDB entry 7BWJ). Both antibody binding interfaces partially overlap with the ACE2 binding interface. Among 16 mutations that map to the RBD:CC12.1 interface, 11 are likely to disrupt CC12.1 binding but not ACE2 binding. Among 12 mutations that map to the RBD:P2B-2F6 interface, 8 are likely to disrupt P2B-2F6 binding but not ACE2 binding. As expected, none of the mutations observed to date appear likely to disrupt the RBD:ACE2 interface. We conclude that SARS-CoV-2 with mutated forms of the spike protein may retain the ability to bind ACE2 while evading recognition by antibodies that arise in response to the original wild-type form of the spike protein. It seems likely that immune evasion will be possible regardless of whether the spike protein was encountered in the form of infectious virus, or as the immunogen in a vaccine. Therefore, it also seems likely that reinfection with a variant strain of SARS-CoV-2 may occur among people who recover from Covid-19, and that vaccines with the ability to generate antibodies against multiple variant forms of the spike protein will be necessary to protect against variant forms of SARS-CoV-2 that are already circulating in the human population.


Author(s):  
James R. Byrnes ◽  
Xin X. Zhou ◽  
Irene Lui ◽  
Susanna K. Elledge ◽  
Jeff E. Glasgow ◽  
...  

ABSTRACTAs SARS-CoV-2 continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Convalescent serum is being used for treatment and for isolation of patient-derived antibodies. However, currently there is not a simple means to estimate serum bulk neutralizing capability. Here we present an efficient competitive serological assay that can simultaneously determine an individual’s seropositivity against the SARS-CoV-2 Spike protein and estimate the neutralizing capacity of anti-Spike antibodies to block interaction with the human angiotensin converting enzyme 2 (ACE2) required for viral entry. In this ELISA-based assay, we present natively-folded viral Spike protein receptor binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then supplemented with soluble ACE2-Fc to compete for RBD-binding serum antibodies, and antibody binding quantified. Comparison of signal from untreated serum and ACE2-Fc-treated serum reveals the presence of antibodies that compete with ACE2 for RBD binding, as evidenced by loss of signal with ACE2-Fc treatment. In our test cohort of nine convalescent SARS-CoV-2 patients, we found all patients had developed anti-RBD antibodies targeting the epitope responsible for ACE2 engagement. This assay provides a simple and high-throughput method to screen patient sera for potentially neutralizing anti-Spike antibodies to enable identification of candidate sera for therapeutic use.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
James R. Byrnes ◽  
Xin X. Zhou ◽  
Irene Lui ◽  
Susanna K. Elledge ◽  
Jeff E. Glasgow ◽  
...  

ABSTRACT As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual’s seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies. IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies.


2021 ◽  
Author(s):  
Jonathan K. Williams ◽  
Baifan Wang ◽  
Andrew Sam ◽  
Cody L. Hoop ◽  
David A. Case ◽  
...  

AbstractSince the identification of the SARS-CoV-2 virus as the causative agent of the current COVID-19 pandemic, considerable effort has been spent characterizing the interaction between the Spike protein receptor-binding domain (RBD) and the human angiotensin converting enzyme 2 (ACE2) receptor. This has provided a detailed picture of the end point structure of the RBD-ACE2 binding event, but what remains to be elucidated is the conformation and dynamics of the RBD prior to its interaction with ACE2. In this work we utilize molecular dynamics simulations to probe the flexibility and conformational ensemble of the unbound state of the receptor-binding domain from SARS-CoV-2 and SARS-CoV. We have found that the unbound RBD has a localized region of dynamic flexibility in Loop 3 and that mutations identified during the COVID-19 pandemic in Loop 3 do not affect this flexibility. We use a loop-modeling protocol to generate and simulate novel conformations of the CoV2-RBD Loop 3 region that sample conformational space beyond the ACE2 bound crystal structure. This has allowed for the identification of interesting substates of the unbound RBD that are lower energy than the ACE2-bound conformation, and that block key residues along the ACE2 binding interface. These novel unbound substates may represent new targets for therapeutic design.


2021 ◽  
Author(s):  
Terra Sztain ◽  
Surl-Hee Ahn ◽  
Anthony T. Bogetti ◽  
Lorenzo Casalino ◽  
Jory A. Goldsmith ◽  
...  

AbstractSARS-CoV-2 infection is controlled by the opening of the spike protein receptor binding domain (RBD), which transitions from a glycan-shielded (down) to an exposed (up) state in order to bind the human ACE2 receptor and infect cells. While snapshots of the up and down states have been obtained by cryoEM and cryoET, details of the RBD opening transition evade experimental characterization. Here, over 200 μs of weighted ensemble (WE) simulations of the fully glycosylated spike ectodomain allow us to characterize more than 300 continuous, kinetically unbiased RBD opening pathways. Together with biolayer interferometry experiments, we reveal a gating role for the N-glycan at position N343, which facilitates RBD opening. Residues D405, R408, and D427 also participate. The atomic-level characterization of the glycosylated spike activation mechanism provided herein achieves a new high-water mark for ensemble pathway simulations and offers a foundation for understanding the fundamental mechanisms of SARS-CoV-2 viral entry and infection.


2021 ◽  
Author(s):  
Jarrod Shilts ◽  
Thomas M. Crozier ◽  
Ana Teixeira-Silva ◽  
Ildar Gabaev ◽  
Edward J.D. Greenwood ◽  
...  

The interactions between severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to COVID-19. The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary ACE2 receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells. We discovered that in addition to ACE2, expression of LRRC15 also causes spike protein binding. This interaction is distinct from other known spike attachment mechanisms such as heparan sulfates or lectin receptors. Measurements of orthologous coronavirus spike proteins implied the interaction was restricted to SARS-CoV-2, suggesting LRRC15 represents a novel class of spike binding interaction. We localized the interaction to the C-terminus of the S1 domain, and showed that LRRC15 shares recognition of the ACE2 receptor binding domain. From analyzing proteomics and single-cell transcriptomics, we identify LRRC15 expression as being common in human lung vasculature cells and fibroblasts. Although infection assays demonstrated that LRRC15 alone is not sufficient to permit viral entry, we present evidence it can modulate infection of human cells. This unexpected interaction merits further investigation to determine how SARS-CoV-2 exploits host LRRC15 and whether it could account for any of the distinctive features of COVID-19.


2020 ◽  
Author(s):  
Takamitsu Hattori ◽  
Akiko Koide ◽  
Tatyana Panchenko ◽  
Larizbeth A. Romero ◽  
Kai Wen Teng ◽  
...  

AbstractThe COVID-19 pandemic remains a global threat, and host immunity remains the main mechanism of protection against the disease. The spike protein on the surface of SARS-CoV-2 is a major antigen and its engagement with human ACE2 receptor plays an essential role in viral entry into host cells. Consequently, antibodies targeting the ACE2-interacting surface (ACE2IS) located in the receptor-binding domain (RBD) of the spike protein can neutralize the virus. However, the understanding of immune responses to SARS-CoV-2 is still limited, and it is unclear how the virus protects this surface from recognition by antibodies. Here, we designed an RBD mutant that disrupts the ACE2IS and used it to characterize the prevalence of antibodies directed to the ACE2IS from convalescent sera of 94 COVID19-positive patients. We found that only a small fraction of RBD-binding antibodies targeted the ACE2IS. To assess the immunogenicity of different parts of the spike protein, we performed in vitro antibody selection for the spike and the RBD proteins using both unbiased and biased selection strategies. Intriguingly, unbiased selection yielded antibodies that predominantly targeted regions outside the ACE2IS, whereas ACE2IS-binding antibodies were readily identified from biased selection designed to enrich such antibodies. Furthermore, antibodies from an unbiased selection using the RBD preferentially bound to the surfaces that are inaccessible in the context of whole spike protein. These results suggest that the ACE2IS has evolved less immunogenic than the other regions of the spike protein, which has important implications in the development of vaccines against SARS-CoV-2.


Author(s):  
Ratul Chowdhury ◽  
Costas D. Maranas

AbstractSARS-CoV-2 is a novel highly virulent pathogen which gains entry to human cells by binding with the cell surface receptor – angiotensin converting enzyme (ACE2). We computationally contrasted the binding interactions between human ACE2 and coronavirus spike protein receptor binding domain (RBD) of the 2002 epidemic-causing SARS-CoV-1, SARS-CoV-2, and bat coronavirus RaTG13 using the Rosetta energy function. We find that the RBD of the spike protein of SARS-CoV-2 is highly optimized to achieve very strong binding with human ACE2 (hACE2) which is consistent with its enhanced infectivity. SARS-CoV-2 forms the most stable complex with hACE2 compared to SARS-CoV-1 (23% less stable) or RaTG13 (11% less stable) while occupying the greatest number of residues in the ATR1 binding site. Notably, the SARS-CoV-2 RBD out-competes the angiotensin 2 receptor type I (ATR1) which is the native binding partner of ACE2 by 35% in terms of the calculated binding affinity. Strong binding is mediated through strong electrostatic attachments with every fourth residue on the N-terminus alpha-helix (starting from Ser19 to Asn53) as the turn of the helix makes these residues solvent accessible. By contrasting the spike protein SARS-CoV-2 Rosetta binding energy with ACE2 of different livestock and pet species we find strongest binding with bat ACE2 followed by human, feline, equine, canine and finally chicken. This is consistent with the hypothesis that bats are the viral origin and reservoir species. These results offer a computational explanation for the increased infectivity of SARS-CoV-2 and allude to therapeutic modalities by identifying and rank-ordering the ACE2 residues involved in binding with the virus.


Sign in / Sign up

Export Citation Format

Share Document