scholarly journals Biophysical characterization of the SARS-CoV-2 spike protein binding with the ACE2 receptor and implications for infectivity

Author(s):  
Ratul Chowdhury ◽  
Costas D. Maranas

AbstractSARS-CoV-2 is a novel highly virulent pathogen which gains entry to human cells by binding with the cell surface receptor – angiotensin converting enzyme (ACE2). We computationally contrasted the binding interactions between human ACE2 and coronavirus spike protein receptor binding domain (RBD) of the 2002 epidemic-causing SARS-CoV-1, SARS-CoV-2, and bat coronavirus RaTG13 using the Rosetta energy function. We find that the RBD of the spike protein of SARS-CoV-2 is highly optimized to achieve very strong binding with human ACE2 (hACE2) which is consistent with its enhanced infectivity. SARS-CoV-2 forms the most stable complex with hACE2 compared to SARS-CoV-1 (23% less stable) or RaTG13 (11% less stable) while occupying the greatest number of residues in the ATR1 binding site. Notably, the SARS-CoV-2 RBD out-competes the angiotensin 2 receptor type I (ATR1) which is the native binding partner of ACE2 by 35% in terms of the calculated binding affinity. Strong binding is mediated through strong electrostatic attachments with every fourth residue on the N-terminus alpha-helix (starting from Ser19 to Asn53) as the turn of the helix makes these residues solvent accessible. By contrasting the spike protein SARS-CoV-2 Rosetta binding energy with ACE2 of different livestock and pet species we find strongest binding with bat ACE2 followed by human, feline, equine, canine and finally chicken. This is consistent with the hypothesis that bats are the viral origin and reservoir species. These results offer a computational explanation for the increased infectivity of SARS-CoV-2 and allude to therapeutic modalities by identifying and rank-ordering the ACE2 residues involved in binding with the virus.

2013 ◽  
Vol 453 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Stefan Mahrhold ◽  
Jasmin Strotmeier ◽  
Consuelo Garcia-Rodriguez ◽  
Jianlong Lou ◽  
James D. Marks ◽  
...  

The highly specific binding and uptake of BoNTs (botulinum neurotoxins; A–G) into peripheral cholinergic motoneurons turns them into the most poisonous substances known. Interaction with gangliosides accumulates the neurotoxins on the plasma membrane and binding to a synaptic vesicle membrane protein leads to neurotoxin endocytosis. SV2 (synaptic vesicle glycoprotein 2) mediates the uptake of BoNT/A and /E, whereas Syt (synaptotagmin) is responsible for the endocytosis of BoNT/B and /G. The Syt-binding site of the former was identified by co-crystallization and mutational analyses. In the present study we report the identification of the SV2-binding interface of BoNT/E. Mutations interfering with SV2 binding were located at a site that corresponds to the Syt-binding site of BoNT/B and at an extended surface area located on the back of the conserved ganglioside-binding site, comprising the N- and C-terminal half of the BoNT/E-binding domain. Mutations impairing the affinity also reduced the neurotoxicity of full-length BoNT/E at mouse phrenic nerve hemidiaphragm preparations demonstrating the crucial role of the identified binding interface. Furthermore, we show that a monoclonal antibody neutralizes BoNT/E activity because it directly interferes with the BoNT/E–SV2 interaction. The results of the present study suggest a novel mode of binding for BoNTs that exploit SV2 as a cell surface receptor.


2021 ◽  
Vol 22 (16) ◽  
pp. 8963
Author(s):  
Satya Prakash Shukla ◽  
Kwang Bog Cho ◽  
Vineeta Rustagi ◽  
Xiang Gao ◽  
Xinping Fu ◽  
...  

Coronavirus Disease 2019 (COVID-19) remains a global health crisis, despite the development and success of vaccines in certain countries. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, uses its spike protein to bind to the human cell surface receptor angiotensin-converting enzyme 2 (ACE2), which allows the virus to enter the human body. Using our unique cell screening technology, we identified two ACE2-binding peptoid compounds and developed dimeric derivatives (ACE2P1D1 and ACE2P2D1) that effectively blocked spike protein-ACE2 interaction, resulting in the inhibition of SARS-CoV-2 pseudovirus entry into human cells. ACE2P1D1 and ACE2P2D1 also blocked infection by a D614G mutant pseudovirus. More importantly, these compounds do not decrease ACE2 expression nor its enzyme activity (which is important in normal blood pressure regulation), suggesting safe applicability in humans


2021 ◽  
Author(s):  
Maria Dolores Rivas ◽  
Jose Maria Rafael Saponi-Cortes ◽  
Jose Zamorano

AbstractCOVID-19 currently represents a major public health problem. Multiple efforts are being performed to control this disease. Vaccinations are already in progress. However, no effective treatments have been found so far. The disease is caused by the SARS-CoV-2 coronavirus that through the Spike protein interacts with its cell surface receptor ACE2 to enter into the host cells. Therefore, compounds able to block this interaction may help to stop disease progression. In this study, we have analyzed the effect of compounds reported to interact and modify the activity of ACE2 on the binding of the Spike protein. Among the compounds tested, we found that hydroxyzine could inhibit the binding of the receptor-binding domain of Spike protein to ACE2 in a qualitative in vitro assay. This finding supports the reported clinical data showing the benefits of hydroxyzine on COVID-19 patients, raising the need for further investigation into its effectiveness in the treatment of COVID-19 given its well-characterized medical properties and affordable cost.


2015 ◽  
Vol 26 (17) ◽  
pp. 3117-3127 ◽  
Author(s):  
Leslie Pomeraniec ◽  
Melissa Hector-Greene ◽  
Marcelo Ehrlich ◽  
Gerard C. Blobe ◽  
Yoav I. Henis

Complex formation among transforming growth factor-β (TGF-β) receptors and its modulation by coreceptors represent an important level of regulation for TGF-β signaling. Oligomerization of ALK5 and the type II TGF-β receptor (TβRII) has been thoroughly investigated, both in vitro and in intact cells. However, such studies, especially in live cells, are missing for the endothelial cell coreceptor endoglin and for the ALK1 type I receptor, which enables endothelial cells to respond to TGF-β by activation of both Smad2/3 and Smad1/5/8. Here we combined immunoglobulin G–mediated immobilization of one cell-surface receptor with lateral mobility studies of a coexpressed receptor by fluorescence recovery after photobleaching (FRAP) to demonstrate that endoglin forms stable homodimers that function as a scaffold for binding TβRII, ALK5, and ALK1. ALK1 and ALK5 bind to endoglin with differential dependence on TβRII, which plays a major role in recruiting ALK5 to the complex. Signaling data indicate a role for the quaternary receptor complex in regulating the balance between TGF-β signaling to Smad1/5/8 and to Smad2/3.


1999 ◽  
Vol 10 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Francis J. Eng ◽  
Oleg Varlamov ◽  
Lloyd D. Fricker

Gp180, a duck protein that was proposed to be a cell surface receptor for duck hepatitis B virus, is the homolog of metallocarboxypeptidase D, a mammalian protein thought to function in the trans-Golgi network (TGN) in the processing of proteins that transit the secretory pathway. Both gp180 and mammalian metallocarboxypeptidase D are type I integral membrane proteins that contain a 58-residue cytosolic C-terminal tail that is highly conserved between duck and rat. To investigate the regions of the gp180 tail involved with TGN retention and intracellular trafficking, gp180 and various deletion and point mutations were expressed in the AtT-20 mouse pituitary corticotroph cell line. Full length gp180 is enriched in the TGN and also cycles to the cell surface. Truncation of the C-terminal 56 residues of the cytosolic tail eliminates the enrichment in the TGN and the retrieval from the cell surface. Truncation of 12–43 residues of the tail reduced retention in the TGN and greatly accelerated the turnover of the protein. In contrast, deletion of the C-terminal 45 residues, which truncates a potential YxxL-like sequence (FxxL), reduced the protein turnover and caused accumulation of the protein on the cell surface. A point mutation of the FxxL sequence to AxxL slowed internalization, showing that this element is important for retrieval from the cell surface. Mutation of a pair of casein kinase II sites within an acidic cluster showed that they are also important for trafficking. The present study demonstrates that multiple sequence elements within the cytoplasmic tail of gp180 participate in TGN localization.


2021 ◽  
Vol 14 (10) ◽  
pp. 1055
Author(s):  
Hoai Thi Thu Tran ◽  
Michael Gigl ◽  
Nguyen Phan Khoi Le ◽  
Corinna Dawid ◽  
Evelyn Lamy

To date, there have been rapidly spreading new SARS-CoV-2 “variants of concern”. They all contain multiple mutations in the ACE2 receptor recognition site of the spike protein, compared to the original Wuhan sequence, which is of great concern, because of their potential for immune escape. Here we report on the efficacy of common dandelion (Taraxacum officinale) to block protein–protein interaction of SARS-COV-2 spike to the human ACE2 receptor. This could be shown for the wild type and mutant forms (D614G, N501Y, and a mix of K417N, E484K, and N501Y) in human HEK293-hACE2 kidney and A549-hACE2-TMPRSS2 lung cells. High-molecular-weight compounds in the water-based extract account for this effect. Infection of the lung cells using SARS-CoV-2 spike D614 and spike Delta (B.1.617.2) variant pseudotyped lentivirus particles was efficiently prevented by the extract and so was virus-triggered pro-inflammatory interleukin 6 secretion. Modern herbal monographs consider the usage of this medicinal plant as safe. Thus, the in vitro results reported here should encourage further research on the clinical relevance and applicability of the extract as prevention strategy for SARS-CoV-2 infection in terms of a non-invasive, oral post-exposure prophylaxis.


Author(s):  
Tawsif Ahmed Kazi ◽  
Suranjita Mitra ◽  
Bidhan Chandra Mukhopadhyay ◽  
Rajarshi Bhattacharya ◽  
Sukhendu Mandal ◽  
...  

The recent 2019-nCoV outbreak, spreading infection around the globe is jeopardizing the public health and global economy. The virus was reported to have emerged from an animal market in Wuhan, China at the end of 2019 and presumed to have originated from bats and eventually transmitted in humans. The entry of the virus into human cells is triggered by a series of molecular events initiated with the binding of a receptor-binding domain of viral spike protein to human Ace2 cell surface receptor. Based on the comparative sequence analysis of the well-known binding hotspots of human Ace2, cross-interacting potential of 2019-nCoV was predicted, which suggests Ace2 of wild animals like tiger, bear, orangutan, etc.; aquatic mammals like whale and dolphins; and domestic animals like cat, horse, goat, sheep, dog etc. as potential target. However, the recognition of Ace2 of bats, rats and mice by the 2019-nCoV spike protein remains under question. The study indicates that 2019-nCoV might have broad host range and may thus intensify the gravity of 2019-nCoV outbreak


Author(s):  
Miloslav Sanda ◽  
Lindsay Morrison ◽  
Radoslav Goldman

ABSTRACTCovid-19 pandemic outbreak is the reason of the current world health crisis. The development of effective antiviral compounds and vaccines requires detailed descriptive studies of the SARS-CoV-2 proteins. The SARS-CoV-2 spike (S) protein mediates virion binding to the human cells through its interaction with the ACE2 cell surface receptor and is one of the prime immunization targets. A functional virion is composed of three S1 and three S2 subunits created by furin cleavage of the spike protein at R682, a polybasic cleavage sites that differs from the SARS-CoV spike protein of 2002. We observe that the spike protein is O-glycosylated on a threonine (T678) near the furin cleavage site occupied by core-1 and core-2 structures. In addition, we have identified eight additional O-glycopeptides on the spike glycoprotein and we confirmed that the spike protein is heavily N-glycosylated. Our recently developed LC-MS/MS methodology allowed us to identify LacdiNAc structural motives on all occupied N-glycopeptides and polyLacNAc structures on six glycopeptides of the spike protein. In conclusion, our study substantially expands the current knowledge of the spike protein’s glycosylation and enables the investigation of the influence of the O-glycosylation on its proteolytic activation.


1987 ◽  
Vol 104 (3) ◽  
pp. 585-593 ◽  
Author(s):  
S Dedhar ◽  
E Ruoslahti ◽  
M D Pierschbacher

To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen-Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in type I collagen. Three radioactive polypeptides having apparent molecular masses of 250 kD, 70 kD, and 30 kD were distinguishable in that they showed affinity toward the collagen and collagen-like peptide affinity columns, and could be specifically eluted from these columns with a solution of an Arg-Gly-Asp-containing peptide, Gly-Arg-Gly-Asp-Thr-Pro. These collagen-binding polypeptides associated with phosphatidylcholine liposomes, and the resulting liposomes bound specifically to type I collagen or the collagen-like peptide but not to fibronectin or vitronectin or heat-denatured collagen. The binding of these liposomes to type I collagen could be inhibited with the peptide Gly-Arg-Gly-Asp-Thr-Pro and with EDTA, but not with a variant peptide Gly-Arg-Gly-Glu-Ser-Pro. We conclude from these data that these three polypeptides are membrane molecules that behave as a cell surface receptor (or receptor complex) for type I collagen by interacting with it through the Arg-Gly-Asp tripeptide adhesion signal. The lack of binding to denatured collagen suggests that the conformation of the Arg-Gly-Asp sequence is important in the recognition of collagen by the receptor complex.


2015 ◽  
Vol 209 (4) ◽  
pp. 579-593 ◽  
Author(s):  
Stephan Wilmes ◽  
Oliver Beutel ◽  
Zhi Li ◽  
Véronique Francois-Newton ◽  
Christian P. Richter ◽  
...  

Type I interferons (IFNs) activate differential cellular responses through a shared cell surface receptor composed of the two subunits, IFNAR1 and IFNAR2. We propose here a mechanistic model for how IFN receptor plasticity is regulated on the level of receptor dimerization. Quantitative single-molecule imaging of receptor assembly in the plasma membrane of living cells clearly identified IFN-induced dimerization of IFNAR1 and IFNAR2. The negative feedback regulator ubiquitin-specific protease 18 (USP18) potently interferes with the recruitment of IFNAR1 into the ternary complex, probably by impeding complex stabilization related to the associated Janus kinases. Thus, the responsiveness to IFNα2 is potently down-regulated after the first wave of gene induction, while IFNβ, due to its ∼100-fold higher binding affinity, is still able to efficiently recruit IFNAR1. Consistent with functional data, this novel regulatory mechanism at the level of receptor assembly explains how signaling by IFNβ is maintained over longer times compared with IFNα2 as a temporally encoded cause of functional receptor plasticity.


Sign in / Sign up

Export Citation Format

Share Document