scholarly journals Vectorchip: Microfluidic platform for highly parallel bite by bite profiling of mosquito-borne pathogen transmission

2020 ◽  
Author(s):  
Shailabh Kumar ◽  
Felix J. H. Hol ◽  
Sujit Pujhari ◽  
Clayton Ellington ◽  
Haripriya Vaidehi Narayanan ◽  
...  

AbstractMosquito bites transmit a number of human pathogens resulting in potentially fatal diseases including malaria, dengue, chikungunya, West Nile encephalitis, and Zika. Although female mosquitoes transmit pathogens via salivary droplets deposited during blood feeding on a host, very little is known about the genomic content of these nanoliter scale droplets, including the transmission dynamics of live pathogens. Here we introduce Vectorchip, a low-cost, scalable microfluidic platform for molecular interrogation of individual mosquito bites in a high-throughput fashion. An ultra-thin PDMS membrane coupled to a microfluidic chip acts as a biting interface, through which freely-behaving mosquitoes deposit saliva droplets by biting into isolated arrayed micro-wells enabling molecular interrogation of individual bites. By modulating membrane thickness, the device enables on-chip comparison of biting capacity and provides a mechanical filter allowing selection of a specific mosquito species. Utilizing Vectorchip, we show on-chip simultaneous detection of mosquito DNA as well as viral RNA from Zika infected Aedes aegypti mosquitoes – demonstrating multiplexed high-throughput screening of vectors and pathogens. Focus-forming assays performed on-chip quantify number of infectious viral particles transmitted during mosquito bites, enabling assessment of active virus transmission. The platform presents a promising approach for single-bite-resolution laboratory and field characterization of vector pathogen communities, to reveal the intricate dynamics of pathogen transmission, and could serve as powerful early warning artificial “sentinel” for mosquito-borne diseases.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shailabh Kumar ◽  
Felix J. H. Hol ◽  
Sujit Pujhari ◽  
Clayton Ellington ◽  
Haripriya Vaidehi Narayanan ◽  
...  

AbstractMosquito bites transmit a number of pathogens via salivary droplets deposited during blood-feeding, resulting in potentially fatal diseases. Little is known about the genomic content of these nanodroplets, including the transmission dynamics of live pathogens. Here we introduce Vectorchip, a low-cost, scalable microfluidic platform enabling high-throughput molecular interrogation of individual mosquito bites. We introduce an ultra-thin PDMS membrane which acts as a biting interface to arrays of micro-wells. Freely-behaving mosquitoes deposit saliva droplets by biting into these micro-wells. By modulating membrane thickness, we observe species-dependent differences in mosquito biting capacity, utilizable for selective sample collection. We demonstrate RT-PCR and focus-forming assays on-chip to detect mosquito DNA, Zika virus RNA, as well as quantify infectious Mayaro virus particles transmitted from single mosquito bites. The Vectorchip presents a promising approach for single-bite-resolution laboratory and field characterization of vector-pathogen communities, and could serve as a powerful early warning sentinel for mosquito-borne diseases.


Lab on a Chip ◽  
2012 ◽  
Vol 12 (23) ◽  
pp. 4968 ◽  
Author(s):  
Serap Altay Arpali ◽  
Caglar Arpali ◽  
Ahmet F. Coskun ◽  
Hsin-Hao Chiang ◽  
Aydogan Ozcan

2016 ◽  
Vol 113 (52) ◽  
pp. 14915-14920 ◽  
Author(s):  
Yih Yang Chen ◽  
Pamuditha N. Silva ◽  
Abdullah Muhammad Syed ◽  
Shrey Sindhwani ◽  
Jonathan V. Rocheleau ◽  
...  

On-chip imaging of intact three-dimensional tissues within microfluidic devices is fundamentally hindered by intratissue optical scattering, which impedes their use as tissue models for high-throughput screening assays. Here, we engineered a microfluidic system that preserves and converts tissues into optically transparent structures in less than 1 d, which is 20× faster than current passive clearing approaches. Accelerated clearing was achieved because the microfluidic system enhanced the exchange of interstitial fluids by 567-fold, which increased the rate of removal of optically scattering lipid molecules from the cross-linked tissue. Our enhanced clearing process allowed us to fluorescently image and map the segregation and compartmentalization of different cells during the formation of tumor spheroids, and to track the degradation of vasculature over time within extracted murine pancreatic islets in static culture, which may have implications on the efficacy of beta-cell transplantation treatments for type 1 diabetes. We further developed an image analysis algorithm that automates the analysis of the vasculature connectivity, volume, and cellular spatial distribution of the intact tissue. Our technique allows whole tissue analysis in microfluidic systems, and has implications in the development of organ-on-a-chip systems, high-throughput drug screening devices, and in regenerative medicine.


2015 ◽  
Vol 89 (16) ◽  
pp. 8428-8443 ◽  
Author(s):  
Jessica Y. Rathbun ◽  
Magali E. Droniou ◽  
Robert Damoiseaux ◽  
Kevin G. Haworth ◽  
Jill E. Henley ◽  
...  

ABSTRACTCertain members of theArenaviridaefamily are category A agents capable of causing severe hemorrhagic fevers in humans. Specific antiviral treatments do not exist, and the only commonly used drug, ribavirin, has limited efficacy and can cause severe side effects. The discovery and development of new antivirals are inhibited by the biohazardous nature of the viruses, making them a relatively poorly understood group of human pathogens. We therefore adapted a reverse-genetics minigenome (MG) rescue system based on Junin virus, the causative agent of Argentine hemorrhagic fever, for high-throughput screening (HTS). The MG rescue system recapitulates all stages of the virus life cycle and enables screening of small-molecule libraries under biosafety containment level 2 (BSL2) conditions. The HTS resulted in the identification of four candidate compounds with potent activity against a broad panel of arenaviruses, three of which were completely novel. The target for all 4 compounds was the stage of viral entry, which positions the compounds as potentially important leads for future development.IMPORTANCEThe arenavirus family includes several members that are highly pathogenic, causing acute viral hemorrhagic fevers with high mortality rates. No specific effective treatments exist, and although a vaccine is available for Junin virus, the causative agent of Argentine hemorrhagic fever, it is licensed for use only in areas where Argentine hemorrhagic fever is endemic. For these reasons, it is important to identify specific compounds that could be developed as antivirals against these deadly viruses.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandra C. Sun ◽  
Daniel J. Steyer ◽  
Anthony R. Allen ◽  
Emory M. Payne ◽  
Robert T. Kennedy ◽  
...  

AbstractThe implementation of continuous flow technology is critical towards enhancing the application of photochemical reactions for industrial process development. However, there are significant time and resource constraints associated with translating discovery scale vial-based batch reactions to continuous flow scale-up conditions. Herein we report the development of a droplet microfluidic platform, which enables high-throughput reaction discovery in flow to generate pharmaceutically relevant compound libraries. This platform allows for enhanced material efficiency, as reactions can be performed on picomole scale. Furthermore, high-throughput data collection via on-line ESI mass spectrometry facilitates the rapid analysis of individual, nanoliter-sized reaction droplets at acquisition rates of 0.3 samples/s. We envision this high-throughput screening platform to expand upon the robust capabilities and impact of photochemical reactions in drug discovery and development.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Luis E Contreras-Llano ◽  
Cheemeng Tan

Abstract The incorporation of cell-free transcription and translation systems into high-throughput screening applications enables the in situ and on-demand expression of peptides and proteins. Coupled with modern microfluidic technology, the cell-free methods allow the screening, directed evolution and selection of desired biomolecules in minimal volumes within a short timescale. Cell-free high-throughput screening applications are classified broadly into in vitro display and on-chip technologies. In this review, we outline the development of cell-free high-throughput screening methods. We further discuss operating principles and representative applications of each screening method. The cell-free high-throughput screening methods may be advanced by the future development of new cell-free systems, miniaturization approaches, and automation technologies.


CLEO: 2013 ◽  
2013 ◽  
Author(s):  
Serap Altay Arpali ◽  
Caglar Arpali ◽  
Ahmet F. Coskun ◽  
Hsin-Hao Chiang ◽  
Aydogan Ozcan

ACS Photonics ◽  
2018 ◽  
Vol 5 (6) ◽  
pp. 2081-2086 ◽  
Author(s):  
Yibo Zhang ◽  
Michael Alexander ◽  
Sam Yang ◽  
Yinxu Bian ◽  
Elliot Botvinick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document