scholarly journals Differences in cofactor, oxygen and sulfur requirements influence niche adaptation in deep-sea vesicomyid clam symbioses

2020 ◽  
Author(s):  
Corinna Breusing ◽  
Maёva Perez ◽  
Roxanne A. Beinart ◽  
C. Robert Young

AbstractVertical transmission of bacterial endosymbionts is accompanied by virtually irreversible gene loss that can provide insights into adaptation to divergent ecological niches. While patterns of genome reduction have been well described in some terrestrial symbioses, they are less understood in marine systems where vertical transmission is relatively rare. The association between deep-sea vesicomyid clams and chemosynthetic Gammaproteobacteria is one example of maternally inherited symbioses in the ocean. Differences in nitrogen and sulfur physiology between the two dominant symbiont groups, Ca. Ruthia and Ca. Vesicomyosocius, have been hypothesized to influence niche exploitation, which likely affects gene content evolution in these symbionts. However, genomic data are currently limited to confirm this assumption. In the present study we sequenced and compared 11 vesicomyid symbiont genomes with existing assemblies for Ca. Vesicomyosocius okutanii and Ca. Ruthia magnifica. Our analyses indicate that the two vesicomyid symbiont groups have a common core genome related to chemosynthetic metabolism, but differ in their potential for nitrate respiration and flexibility to environmental sulfide concentrations. Moreover, Ca. Vesicomyosocius and Ca. Ruthia have different enzymatic requirements for cobalamin and nickel and show contrasting capacities to acquire foreign genetic material. Tests for site-specific positive selection in metabolic candidate genes imply that the observed physiological differences are adaptive and thus likely correspond to ecological niches available to each symbiont group. These findings highlight the role of niche differentiation in creating divergent paths of reductive genome evolution in vertically transmitted symbionts.

Mammalia ◽  
2020 ◽  
Vol 84 (6) ◽  
pp. 503-511
Author(s):  
Hayato Takada ◽  
Riki Ohuchi ◽  
Haruko Watanabe ◽  
Risako Yano ◽  
Risako Miyaoka ◽  
...  

AbstractDifferential resource use allows for diverse species to specialize in ecological niches and thus coexist in a particular area. In the Japanese archipelago, increasing sika deer (Cervus nippon, Temminck 1836) densities have excluded the Japanese serow (Capricornis crispus, Temminck 1836), but in places where deer population densities are low, the two species coexist. We wanted to better understand their habitats and how these two ungulates manage to coexist. We evaluated the role of habitat use in the coexistence of these two sympatric ungulates on Mt. Asama, central Japan. Deer frequently used the dwarf bamboo-rich communities in autumn and winter, and their habitat use was not associated with topography. Serows frequently used deciduous broadleaf shrub-rich communities and steep slopes throughout the year. Consequently, their habitat use was significantly different in terms of vegetation and topography. Niche breadth suggests that deer tend to be generalists, whereas serows tend to be specialists. Niche differentiation in habitat use between deer and serows may make the coexistence of these similarly sized ungulates possible in Japanese mountainous zones. Therefore, the fine-grained habitat mosaic of different vegetation and topography areas might be the underlying feature that allows the coexistence of these two species.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sharon A. Huws ◽  
Joan E. Edwards ◽  
Wanchang Lin ◽  
Francesco Rubino ◽  
Mark Alston ◽  
...  

Abstract Background Gut microbiomes, such as the rumen, greatly influence host nutrition due to their feed energy-harvesting capacity. We investigated temporal ecological interactions facilitating energy harvesting at the fresh perennial ryegrass (PRG)-biofilm interface in the rumen using an in sacco approach and prokaryotic metatranscriptomic profiling. Results Network analysis identified two distinct sub-microbiomes primarily representing primary (≤ 4 h) and secondary (≥ 4 h) colonisation phases and the most transcriptionally active bacterial families (i.e Fibrobacteriaceae, Selemondaceae and Methanobacteriaceae) did not interact with either sub-microbiome, indicating non-cooperative behaviour. Conversely, Prevotellaceae had most transcriptional activity within the primary sub-microbiome (focussed on protein metabolism) and Lachnospiraceae within the secondary sub-microbiome (focussed on carbohydrate degradation). Putative keystone taxa, with low transcriptional activity, were identified within both sub-microbiomes, highlighting the important synergistic role of minor bacterial families; however, we hypothesise that they may be ‘cheating’ in order to capitalise on the energy-harvesting capacity of other microbes. In terms of chemical cues underlying transition from primary to secondary colonisation phases, we suggest that AI-2-based quorum sensing plays a role, based on LuxS gene expression data, coupled with changes in PRG chemistry. Conclusions In summary, we show that fresh PRG-attached prokaryotes are resilient and adapt quickly to changing niches. This study provides the first major insight into the complex temporal ecological interactions occurring at the plant-biofilm interface within the rumen. The study also provides valuable insights into potential plant breeding strategies for development of the utopian plant, allowing optimal sustainable production of ruminants.


2021 ◽  
Vol 22 (9) ◽  
pp. 4484
Author(s):  
Ewa Filip ◽  
Lidia Skuza

Horizontal gene transfer (HGT)- is defined as the acquisition of genetic material from another organism. However, recent findings indicate a possible role of HGT in the acquisition of traits with adaptive significance, suggesting that HGT is an important driving force in the evolution of eukaryotes as well as prokaryotes. It has been noted that, in eukaryotes, HGT is more prevalent than originally thought. Mitochondria and chloroplasts lost a large number of genes after their respective endosymbiotic events occurred. Even after this major content loss, organelle genomes still continue to lose their own genes. Many of these are subsequently acquired by intracellular gene transfer from the original plastid. The aim of our review was to elucidate the role of chloroplasts in the transfer of genes. This review also explores gene transfer involving mitochondrial and nuclear genomes, though recent studies indicate that chloroplast genomes are far more active in HGT as compared to these other two DNA-containing cellular compartments.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 203
Author(s):  
María Gemma Millán de la Blanca ◽  
Eva Martínez-Nevado ◽  
Cristina Castaño ◽  
Juncal García ◽  
Berenice Bernal ◽  
...  

The American flamingo is a useful model for the development of successful semen cryopreservation procedures to be applied to threatened related species from the family Phoenicopteridae, and to permit genetic material banking. Current study sought to develop effective sperm cryopreservation protocols through examining the influences of two permeating cryoprotectants and the seminal plasma removal. During two consecutive years (April), semen samples were collected and frozen from American flamingos. In the first year, the effect of two permeating cryoprotectants, DMA (dimethylacetamide) (6%) or Me2SO (dimethylsulphoxide) (8%), on frozen–thawed sperm variables were compared in 21 males. No differences were seen between DMA and Me2SO for sperm motility, sperm viability, and DNA fragmentation after thawing. In the second year, the role of seminal plasma on sperm cryoresistance was investigated in 31 flamingos. Sperm samples were cryopreserved with and without seminal plasma, using Me2SO (8%) as a cryoprotectant. The results showed that samples with seminal plasma had higher values than samples without seminal plasma for the following sperm variables: Straight line velocity (22.40 µm/s vs. 16.64 µm/s), wobble (75.83% vs. 69.40%), (p < 0.05), linearity (62.73% vs. 52.01%) and straightness (82.38% vs. 73.79%) (p < 0.01); but acrosome integrity was lower (55.56% vs. 66.88%) (p < 0.05). The cryoresistance ratio (CR) was greater in samples frozen with seminal plasma than without seminal plasma for CR-progressive motility (138.72 vs. 54.59), CR-curvilinear velocity (105.98 vs. 89.32), CR-straight line velocity (152.77 vs. 112.58), CR-average path velocity (122.48 vs. 98.12), CR-wobble (111.75 vs. 102.04) (p < 0.05), CR-linearity (139.41 vs. 113.18), and CR-straightness (124.02 vs. 109.97) (p < 0.01). This research demonstrated that there were not differences between Me2SO and DMA to successful freezing sperm of flamingos; seminal plasma removal did not provide a benefit for sperm cryopreservation.


2021 ◽  
Vol 36 (3) ◽  
Author(s):  
Rose Trappes

AbstractNiche construction theory (NCT) aims to transform and unite evolutionary biology and ecology. Much of the debate about NCT has focused on construction. Less attention has been accorded to the niche: what is it, exactly, that organisms are constructing? In this paper I compare and contrast the definition of the niche used in NCT with ecological niche definitions. NCT’s concept of the evolutionary niche is defined as the sum of selection pressures affecting a population. So defined, the evolutionary niche is narrower than the ecological niche. Moreover, when contrasted with a more restricted ecological niche concept, it has a slightly different extension. I point out three kinds of cases in which the evolutionary niche does not coincide with realized ecological niches: extreme habitat degradation, commensalism, and non-limiting or super-abundant resources. These conceptual differences affect the role of NCT in unifying ecology and evolutionary biology.


2014 ◽  
Vol 8 (04) ◽  
pp. 403-407 ◽  
Author(s):  
Andreia P Turchetti ◽  
Tayse D Souza ◽  
Tatiane A Paixão ◽  
Renato L. Santos

Visceral leishmaniasis (VL) is an important zoonosis caused by Leishmania infantum, which has in the domestic dog its principal vertebrate host. VL is usually transmitted by phlebotomine sand flies, however atypical routes of transmission have been described. In this review we discuss the the role of sexual and vertical transmissions, and their role in the maintenance of VL in canine populations.


Parasitology ◽  
2014 ◽  
Vol 141 (9) ◽  
pp. 1203-1215 ◽  
Author(s):  
VICTORIA GILLAN ◽  
EILEEN DEVANEY

SUMMARYNematodes are amongst the most successful and abundant organisms on the planet with approximately 30 000 species described, although the actual number of species is estimated to be one million or more. Despite sharing a relatively simple and invariant body plan, there is considerable diversity within the phylum. Nematodes have evolved to colonize most ecological niches, and can be free-living or can parasitize plants or animals to the detriment of the host organism. In this review we consider the role of heat shock protein 90 (Hsp90) in the nematode life cycle. We describe studies on Hsp90 in the free-living nematode Caenorhabditis elegans and comparative work on the parasitic species Brugia pahangi, and consider whether a dependence upon Hsp90 can be exploited for the control of parasitic species.


Biochemistry ◽  
2003 ◽  
Vol 42 (14) ◽  
pp. 4042-4048 ◽  
Author(s):  
James G. Bann ◽  
Hans Peter Bächinger ◽  
David H. Peyton

Sign in / Sign up

Export Citation Format

Share Document