MRS-measured Glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice

2020 ◽  
Author(s):  
Yuhei Takado ◽  
Hiroyuki Takuwa ◽  
Kazuaki Sampei ◽  
Takuya Urushihata ◽  
Manami Takahashi ◽  
...  

AbstractTo assess if magnetic resonance spectroscopy (MRS)-measured Glutamate (Glu) and GABA reflect excitatory and inhibitory neural activities, respectively, we conducted MRS measurements along with two-photon mesoscopic imaging of calcium signals in excitatory and inhibitory neurons of living, unanesthetized mice. For monitoring stimulus-driven activations of a brain region, MRS signals and mesoscopic neural activities were measured during two consecutive sessions of 15-min prolonged sensory stimulations. In the first session, putative excitatory neuronal activities were increased, while inhibitory neuronal activities remained at the baseline level. In the second half, while excitatory neuronal activities remained elevated, inhibitory neuronal activities were significantly enhanced. We also assessed regional neurochemical and functional statuses related to spontaneous neural firing by measuring MRS signals and neuronal activities in a mouse model of Dravet syndrome under a resting condition. Mesoscopic assessments showed that activities of inhibitory neurons in the cortex were diminished relative to wild-type mice in contrast to spared activities of excitatory neurons. Consistent with these observations, the Dravet model exhibited lower concentrations of GABA than wild-type controls. Collectively, the current investigations demonstrate that the MRS-measured Glu and GABA can reflect spontaneous and stimulated activities of neurons producing and releasing these neurotransmitters in an awake condition.

2021 ◽  
pp. 0271678X2110454
Author(s):  
Yuhei Takado ◽  
Hiroyuki Takuwa ◽  
Kazuaki Sampei ◽  
Takuya Urushihata ◽  
Manami Takahashi ◽  
...  

To assess if magnetic resonance spectroscopy (MRS)-measured Glutamate (Glu) and GABA reflect excitatory and inhibitory neural activities, respectively, we conducted MRS measurements along with two-photon mesoscopic imaging of calcium signals in excitatory and inhibitory neurons of living, unanesthetized mice. For monitoring stimulus-driven activations of a brain region, MRS signals and mesoscopic neural activities were measured during two consecutive sessions of 15-min prolonged sensory stimulations. In the first session, putative excitatory neuronal activities were increased, while inhibitory neuronal activities remained at the baseline level. In the second half, while excitatory neuronal activities remained elevated, inhibitory neuronal activities were significantly enhanced. We assessed regional neurochemical statuses by measuring MRS signals, which were overall in accordance with the neural activities, and neuronal activities and neurochemical statuses in a mouse model of Dravet syndrome under resting condition. Mesoscopic assessments showed that activities of inhibitory neurons in the cortex were diminished relative to wild-type mice in contrast to spared activities of excitatory neurons. Consistent with these observations, the Dravet model exhibited lower concentrations of GABA than wild-type controls. Collectively, the current investigations demonstrate that MRS-measured Glu and GABA can reflect spontaneous and stimulated activities of neurons producing and releasing these neurotransmitters in an awake condition.


2018 ◽  
Author(s):  
Michael Wenzel ◽  
Jordan P. Hamm ◽  
Darcy S. Peterka ◽  
Rafael MD Yuste

AbstractUnderstanding seizure formation and spread remains a critical goal of epilepsy research. While many studies have documented seizure spread, it remains mysterious how they start. We used fast in-vivo two-photon calcium imaging to reconstruct, at cellular resolution, the dynamics of focal cortical seizures as they emerge in epileptic foci (intrafocal), and subsequently propagate (extrafocal). We find that seizures start as intrafocal coactivation of small numbers of neurons (ensembles), which are electrographically silent. These silent “microseizures” expand saltatorily until they break into neighboring cortex, where they progress smoothly and first become detectable by LFP. Surprisingly, we find spatially heterogeneous calcium dynamics of local PV interneuron sub-populations, which rules out a simple role of inhibitory neurons during seizures. We propose a two-step model for the circuit mechanisms of focal seizures, where neuronal ensembles first generate a silent microseizure, followed by widespread neural activation in a travelling wave, which is then detected electrophysiologically.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Wankun L Li ◽  
Monica W Chu ◽  
An Wu ◽  
Yusuke Suzuki ◽  
Itaru Imayoshi ◽  
...  

The rodent olfactory bulb incorporates thousands of newly generated inhibitory neurons daily throughout adulthood, but the role of adult neurogenesis in olfactory processing is not fully understood. Here we adopted a genetic method to inducibly suppress adult neurogenesis and investigated its effect on behavior and bulbar activity. Mice without young adult-born neurons (ABNs) showed normal ability in discriminating very different odorants but were impaired in fine discrimination. Furthermore, two-photon calcium imaging of mitral cells (MCs) revealed that the ensemble odor representations of similar odorants were more ambiguous in the ablation animals. This increased ambiguity was primarily due to a decrease in MC suppressive responses. Intriguingly, these deficits in MC encoding were only observed during task engagement but not passive exposure. Our results indicate that young olfactory ABNs are essential for the enhancement of MC pattern separation in a task engagement-dependent manner, potentially functioning as a gateway for top-down modulation.


2020 ◽  
Vol 100 (3) ◽  
pp. 418-425
Author(s):  
Dominika Grabolus ◽  
Patrycja Wacławik ◽  
Magdalena Zatoń-Dobrowolska

Coat colour is one of the most important qualitative traits of fur animals. Determining melanin pigments forming the basics of visible coat colour may contribute to a better understanding of the process of creating different coat colour variations in fur-bearing animals. This study aimed to (i) isolate pigment cells from the hair of American mink of 11 colour variations (standard brown, silverblue, palomino, black, wild type, sapphire, black cross, pearl, palomino cross, glow, and amber) using acid and alkali; and (ii) characterise the melanin pigments obtained. The purified pigment cells were observed under a light microscope and verified by spectrophotometry scanning and nuclear magnetic resonance spectroscopy. The method allowed for obtaining pure melanin specimens. Using acid and alkali to extract eumelanosomes did not affect their shape and structure; it also allowed for obtaining pheomelanin from the hair. The results have proven that the hair colour of the American mink is based on all types of melanin, and that its variations differ in terms of how much eumelanin and pheomelanin the hair contains.


2020 ◽  
pp. 0271678X2091053
Author(s):  
Antoine Cherix ◽  
Guillaume Donati ◽  
Blanca Lizarbe ◽  
Bernard Lanz ◽  
Carole Poitry-Yamate ◽  
...  

Hippocampus plays a critical role in linking brain energetics and behavior typically associated to stress exposure. In this study, we aimed to simultaneously assess excitatory and inhibitory neuronal metabolism in mouse hippocampus in vivo by applying 18FDG-PET and indirect 13C magnetic resonance spectroscopy (1H-[13C]-MRS) at 14.1 T upon infusion of uniformly 13C-labeled glucose ([U-13C6]Glc). Improving the spectral fitting by taking into account variable decoupling efficiencies of [U-13C6]Glc and refining the compartmentalized model by including two γ-aminobutyric acid (GABA) pools permit us to evaluate the relative contributions of glutamatergic and GABAergic metabolism to total hippocampal neuroenergetics. We report that GABAergic activity accounts for ∼13% of total neurotransmission (VNT) and ∼27% of total neuronal TCA cycle (VTCA) in mouse hippocampus suggesting a higher VTCA/VNT ratio for inhibitory neurons compared to excitatory neurons. Finally, our results provide new strategies and tools for bringing forward the developments and applications of 13C-MRS in specific brain regions of small animals.


2007 ◽  
Vol 204 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Tim Worbs ◽  
Thorsten R. Mempel ◽  
Jasmin Bölter ◽  
Ulrich H. von Andrian ◽  
Reinhold Förster

In contrast to lymphocyte homing, little is known about molecular cues controlling the motility of lymphocytes within lymphoid organs. Applying intravital two-photon microscopy, we demonstrate that chemokine receptor CCR7 signaling enhances the intranodal motility of CD4+ T cells. Compared to wild-type (WT) cells, the average velocity and mean motility coefficient of adoptively transferred CCR7-deficient CD4+ T lymphocytes in T cell areas of WT recipients were reduced by 33 and 55%, respectively. Both parameters were comparably reduced for WT T lymphocytes migrating in T cell areas of plt/plt mice lacking CCR7 ligands. Importantly, systemic application of the CCR7 ligand CCL21 was sufficient to rescue the motility of WT T lymphocytes inside T cell areas of plt/plt recipients. Comparing the movement behavior of T cells in subcapsular areas that are devoid of detectable amounts of CCR7 ligands even in WT mice, we failed to reveal any differences between WT and plt/plt recipients. Furthermore, in both WT and plt/plt recipients, highly motile T cells rapidly accumulated in the subcapsular region after subcutaneous injection of the CCR7 ligand CCL19. Collectively, these data identify CCR7 and its ligands as important chemokinetic factors stimulating the basal motility of CD4+ T cells inside lymph nodes in vivo.


2018 ◽  
Vol 314 (1) ◽  
pp. G81-G90 ◽  
Author(s):  
Leela Rani Avula ◽  
Tiane Chen ◽  
Olga Kovbasnjuk ◽  
Mark Donowitz

The intestinal epithelial brush border Na+/H+ exchanger NHE3 accounts for a large component of intestinal Na absorption. NHE3 is regulated during digestion by signaling complexes on its COOH terminus that include the four multi-PDZ domain-containing NHERF family proteins. All bind to NHE3 and take part in different aspects of NHE3 regulation. Because the roles of each NHERF appear to vary on the basis of the cell model or intestinal segment studied and because of our recent finding that a NHERF3-NHERF2 heterodimer appears important for NHE3 regulation in Caco-2 cells, we examined the role of NHERF3 and NHERF2 in C57BL/6 mouse jejunum using homozygous NHERF2 and NHERF3 knockout mice. NHE3 activity was determined with two-photon microscopy and the dual-emission pH-sensitive dye SNARF-4F. The jejunal apical membrane of NHERF3-null mice appeared similar to wild-type (WT) mice in surface area, microvillus number, and height, which is similar to results previously reported for jejunum of NHERF2-null mice. NHE3 basal activity was not different from WT in either NHERF2- or NHERF3-null jejunum, while d-glucose-stimulated NHE3 activity was reduced in NHERF2, but similar to WT in NHERF3 KO. LPA stimulation and UTP (elevated Ca2+) and cGMP inhibition of NHE3 were markedly reduced in both NHERF2- and NHERF3-null jejunum. Forskolin inhibited NHE3 in NHERF3-null jejunum, but the extent of inhibition was reduced compared with WT. The forskolin inhibition of NHE3 in NHERF2-null mice was too inconsistent to determine whether there was an effect and whether it was altered compared with the WT response. These results demonstrate similar requirement for NHERF2 and NHERF3 in mouse jejunal NHE3 regulation by LPA, Ca2+, and cGMP. The explanation for the similarity is not known but is consistent with involvement of a brush-border NHERF3-NHERF2 heterodimer or sequential NHERF-dependent effects in these aspects of NHE3 regulation. NEW & NOTEWORTHY NHERF2 and NHERF3 are apical membrane multi-PDZ domain-containing proteins that are involved in regulation of intestinal NHE3. This study demonstrates that NHERF2 and NHERF3 have overlapping roles in NHE3 stimulation by LPA and inhibition by elevated Ca2+ and cGMP. These results are consistent with their role being as a NHERF3-NHERF2 heterodimer or via sequential NHERF-dependent signaling steps, and they begin to clarify a role for multiple NHERF proteins in NHE3 regulation.


2009 ◽  
Vol 29 (34) ◽  
pp. 10520-10532 ◽  
Author(s):  
B.-h. Liu ◽  
P. Li ◽  
Y.-t. Li ◽  
Y. J. Sun ◽  
Y. Yanagawa ◽  
...  

2020 ◽  
Author(s):  
Masanobu Kumon ◽  
Shunsuke Nakae ◽  
Kazuhiro Murayama ◽  
Takema Kato ◽  
Shigeo Ohba ◽  
...  

Abstract Background: Isocitrate dehydrogenase (IDH) wild-type gliomas tend to be pathologically defined as glioblastomas. We previously reported that, unlike IDH-mutant gliomas, IDH wild-type gliomas showed significantly lower ratios of myoinositol to total choline (i.e., the Ins/Cho ratio) on magnetic resonance (MR) spectroscopy. Given that IDH-mutant gliomas also have much better prognoses than IDH wild-type gliomas, we hypothesized that this lower Ins/Cho ratio is associated with malignancy in adults with supratentorial gliomas. Therefore, we calculated the Ins/Cho ratios of patients with supratentorial IDH wild-type gliomas and investigated their progression free survival (PFS) and overall survival (OS) to determine its utility as a prognostic marker.Methods: We classified IDH wild-type gliomas (n = 30) into two groups based on the Ins/Cho ratios, and compared patient backgrounds, pathological findings, PFS, OS, and copy number aberrations.Results: Compared with the group with high Ins/Cho ratios, the group with low Ins/Cho ratios had shorter PFS (P = 0.020) and OS (P = 0.037) durations. Multivariate analysis demonstrated that the Ins/Cho ratio correlated significantly with PFS (hazard ratio 0.34, P = 0.027). Conclusion: We conclude that the preoperative Ins/Cho ratio can be used as a novel prognostic factor for IDH wild-type gliomas.


Sign in / Sign up

Export Citation Format

Share Document