scholarly journals Microtubules and Gαo-signaling independently regulate the preferential secretion of newly synthesized insulin granules in pancreatic islet β cells

2020 ◽  
Author(s):  
Ruiying Hu ◽  
Xiaodong Zhu ◽  
Mingyang Yuan ◽  
Kung-Hsien Ho ◽  
Irina Kaverina ◽  
...  

AbstractFor sustainable function, each pancreatic islet β cell maintains thousands of insulin granules (IGs) at all times. Glucose stimulation induces the secretion of a small portion of these IGs and simultaneously triggers IG biosynthesis to sustain this stock. The failure of these processes, often induced by sustained high-insulin output, results in type 2 diabetes. Intriguingly, newly synthesized IGs are more likely secreted during glucose-stimulated insulin secretion. The older IGs tend to lose releasability and be degraded, which represents a futile metabolic load that can sensitize β cells to workload-induced dysfunction and even death. Here, we examine the factor(s) that allows the preferential secretion of younger IGs. We show that β cells without either microtubules (MTs) or Gαo signaling secrete a bigger portion of older IGs, which is associated with increased IG docking on plasma membrane. Yet Gαo inactivation does not alter the β-cell MT network. These findings suggest that Gαo and MT regulate the preferential release of newer IGs via parallel pathways and provide two potential models to further explore the underlying mechanisms and physiological significance of this regulation in functional β cells.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0241939
Author(s):  
Ruiying Hu ◽  
Xiaodong Zhu ◽  
Mingyang Yuan ◽  
Kung-Hsien Ho ◽  
Irina Kaverina ◽  
...  

For sustainable function, each pancreatic islet β cell maintains thousands of insulin secretory granules (SGs) at all times. Glucose stimulation induces the secretion of a small portion of these SGs and simultaneously boosts SG biosynthesis to sustain this stock. The failure of these processes, often induced by sustained high-insulin output, results in type 2 diabetes. Intriguingly, young insulin SGs are more likely secreted during glucose-stimulated insulin secretion (GSIS) for unknown reasons, while older SGs tend to lose releasability and be degraded. Here, we examine the roles of microtubule (MT) and Gαo-signaling in regulating the preferential secretion of young versus old SGs. We show that both MT-destabilization and Gαo inactivation results in more SGs localization near plasma membrane (PM) despite higher levels of GSIS and reduced SG biosynthesis. Intriguingly, MT-destabilization or Gαo-inactivation results in higher secretion probabilities of older SGs, while combining both having additive effects on boosting GSIS. Lastly, Gαo inactivation does not detectably destabilize the β-cell MT network. These findings suggest that Gαo and MT can modulate the preferential release of younger insulin SGs via largely parallel pathways.


2016 ◽  
Vol 231 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Xiwen Xiong ◽  
Xupeng Sun ◽  
Qingzhi Wang ◽  
Xinlai Qian ◽  
Yang Zhang ◽  
...  

Chronic exposure of pancreatic β-cells to abnormally elevated levels of free fatty acids can lead to β-cell dysfunction and even apoptosis, contributing to type 2 diabetes pathogenesis. In pancreatic β-cells, sirtuin 6 (SIRT6) has been shown to regulate insulin secretion in response to glucose stimulation. However, the roles played by SIRT6 in β-cells in response to lipotoxicity remain poorly understood. Our data indicated that SIRT6 protein and mRNA levels were reduced in islets from diabetic and aged mice. High concentrations of palmitate (PA) also led to a decrease in SIRT6 expression in MIN6 β-cells and resulted in cell dysfunction and apoptosis. Knockdown of Sirt6 caused an increase in cell apoptosis and impairment in insulin secretion in response to glucose in MIN6 cells even in the absence of PA exposure. Furthermore, overexpression of SIRT6 alleviated the palmitate-induced lipotoxicity with improved cell viability and increased glucose-stimulated insulin secretion. In summary, our data suggest that SIRT6 can protect against palmitate-induced β-cell dysfunction and apoptosis.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Jaeyong Cho ◽  
Yukio Horikawa ◽  
Mayumi Enya ◽  
Jun Takeda ◽  
Yoichi Imai ◽  
...  

Abstract We sought to determine a mechanism by which L-arginine increases glucose-stimulated insulin secretion (GSIS) in β-cells by finding a protein with affinity to L-arginine using arginine-immobilized magnetic nanobeads technology. Glucokinase (GCK), the key regulator of GSIS and a disease-causing gene of maturity-onset diabetes of the young type 2 (MODY2), was found to bind L-arginine. L-Arginine stimulated production of glucose-6-phosphate (G6P) and induced insulin secretion. We analyzed glucokinase mutants and identified three glutamate residues that mediate binding to L-arginine. One MODY2 patient with GCKE442* demonstrated lower C-peptide-to-glucose ratio after arginine administration. In β-cell line, GCKE442* reduced L-arginine-induced insulin secretion compared with GCKWT. In addition, we elucidated that the binding of arginine protects glucokinase from degradation by E3 ubiquitin ligase cereblon mediated ubiquitination. We conclude that L-arginine induces insulin secretion by increasing G6P production by glucokinase through direct stimulation and by prevention of degradation.


Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 793-803 ◽  
Author(s):  
Joo-Won Lee ◽  
A Hyun Choi ◽  
Mira Ham ◽  
Ji-Won Kim ◽  
Sung Sik Choe ◽  
...  

Increased reactive oxygen species (ROS) induce pancreatic β-cell dysfunction during progressive type 2 diabetes. Glucose-6-phosphate dehydrogenase (G6PD) is a reduced nicotinamide adenine dinucleotide phosphate-producing enzyme that plays a key role in cellular reduction/oxidation regulation. We have investigated whether variations in G6PD contribute to β-cell dysfunction through regulation of ROS accumulation and β-cell gene expression. When the level of G6PD expression in pancreatic islets was examined in several diabetic animal models, such as db/db mice and OLEFT rats, G6PD expression was evidently up-regulated in pancreatic islets in diabetic animals. To investigate the effect of G6PD on β-cell dysfunction, we assessed the levels of cellular ROS, glucose-stimulated insulin secretion and β-cell apoptosis in G6PD-overexpressing pancreatic β-cells. In INS-1 cells, G6PD overexpression augmented ROS accumulation associated with increased expression of prooxidative enzymes, such as inducible nitric oxide synthase and reduced nicotinamide adenine dinucleotide phosphate oxidase. G6PD up-regulation also caused decrease in glucose-stimulated insulin secretion in INS-1 cells and primary pancreatic islets. Moreover, elevated G6PD expression led to β-cell apoptosis, concomitant with the increase in proapoptotic gene expression. On the contrary, suppression of G6PD with small interference RNA attenuated palmitate-induced β-cell apoptosis. Together, these data suggest that up-regulation of G6PD in pancreatic β-cells would induce β-cell dysregulation through ROS accumulation in the development of type 2 diabetes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paula Maria Heister ◽  
Trevor Powell ◽  
Antony Galione

AbstractPancreatic β-cells release insulin upon a rise in blood glucose. The precise mechanisms of stimulus-secretion coupling, and its failure in Diabetes Mellitus Type 2, remain to be elucidated. The consensus model, as well as a class of currently prescribed anti-diabetic drugs, are based around the observation that glucose-evoked ATP production in β-cells leads to closure of cell membrane ATP-gated potassium (KATP) channels, plasma membrane depolarisation, Ca2+ influx, and finally the exocytosis of insulin granules. However, it has been demonstrated by the inactivation of this pathway using genetic and pharmacological means that closure of the KATP channel alone may not be sufficient to explain all β-cell responses to glucose elevation. We have previously proposed that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells. Here we show using total internal reflection fluorescence (TIRF) microscopy that glucose as well as the Ca2+ mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP), known to operate in β-cells, lead to highly localised elementary intracellular Ca2+ signals. These were found to be obscured by measurements of global Ca2+ signals and the action of powerful SERCA-based sequestration mechanisms at the endoplasmic reticulum (ER). Building on our previous work demonstrating that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells, we provide here the first demonstration of elementary Ca2+ signals in response to NAADP, whose occurrence was previously suspected. Optical quantal analysis of these events reveals a unitary event amplitude equivalent to that of known elementary Ca2+ signalling events, inositol trisphosphate (IP3) receptor mediated blips, and ryanodine receptor mediated quarks. We propose that a mechanism based on these highly localised intracellular Ca2+ signalling events mediated by NAADP may initially operate in β-cells when they respond to elevations in blood glucose.


2018 ◽  
Author(s):  
Michael A Kalwat ◽  
In Hyun Hwang ◽  
Jocelyn Macho ◽  
Magdalena G Grzemska ◽  
Jonathan Z Yang ◽  
...  

ABSTRACTEnhancers or inhibitors of insulin secretion could become therapeutics as well as lead to the identification of requisite β-cell regulatory pathways and increase our understanding of pancreatic islet function. Toward this goal, we previously used an insulin-linked luciferase that is co-secreted with insulin in MIN6 β-cells to perform a high-throughput natural product screen for chronic effects on glucose-stimulated insulin secretion. Using multiple phenotypic analyses, we identified that one of the top natural product hits, chromomycin A2 (CMA2), potently inhibited insulin secretion through at least three mechanisms: disruption of Wnt signaling, interfering with β-cell gene expression, and suppression of triggering calcium (Ca2+) influx. Chronic treatment with CMA2 largely ablated glucose-stimulated insulin secretion even post-washout, but did not inhibit glucose-stimulated generation of ATP or Ca2+ influx. However, by using the KATP channel-opener diazoxide, we uncovered defects in depolarization-induced Ca2+ influx which may contribute to the suppressed secretory response. Glucose-responsive ERK1/2 and S6 phosphorylation were also disrupted by chronic CMA2 treatment. The FUSION bioinformatic database indicated that the phenotypic effects of CMA2 clustered with a number of Wnt/GSK3 pathway-related genes. Consistently, CMA2 decreased GSK3 phosphorylation and suppressed activation of a β-catenin activity reporter. CMA2 and a related compound mithramycin are described to have DNA-interaction properties, possibly abrogating transcription factor binding to critical β-cell gene promoters. We observed that CMA2, but not mithramycin, suppressed expression of PDX1 and UCN3. However, neither expression of INSI/II nor insulin content was affected by chronic CMA2. The mechanisms of CMA2-induced insulin secretion defects may involve components both proximal and distal to Ca2+ influx. Therefore, CMA2 is an example of a chemical that can simultaneously disrupt β-cell function through both non-cytotoxic and cytotoxic mechanisms. Future applications of CMA2 and similar aureolic acid analogs for disease therapies should consider the potential impacts on pancreatic islet function.


2012 ◽  
Vol 23 (19) ◽  
pp. 3851-3862 ◽  
Author(s):  
Laurène Vetterli ◽  
Stefania Carobbio ◽  
Shirin Pournourmohammadi ◽  
Rafael Martin-del-Rio ◽  
Dorte M. Skytt ◽  
...  

In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell–specific GDH knockout mouse model, called βGlud1−/−. The absence of GDH in islets isolated from βGlud1–/– mice resulted in abrogation of insulin release evoked by glutamine combined with 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid or l-leucine. Reintroduction of GDH in βGlud1–/– islets fully restored the secretory response. Regarding glucose stimulation, insulin secretion in islets isolated from βGlud1–/– mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1–/– islets. On glucose stimulation, net synthesis of glutamate from α-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1–/– islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response to glucose was fully restored by the provision of cellular glutamate when βGlud1–/– islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role in this process.


2018 ◽  
Vol 150 (12) ◽  
pp. 1747-1757 ◽  
Author(s):  
Michael A. Kalwat ◽  
In Hyun Hwang ◽  
Jocelyn Macho ◽  
Magdalena G. Grzemska ◽  
Jonathan Z. Yang ◽  
...  

Modulators of insulin secretion could be used to treat diabetes and as tools to investigate β cell regulatory pathways in order to increase our understanding of pancreatic islet function. Toward this goal, we previously used an insulin-linked luciferase that is cosecreted with insulin in MIN6 β cells to perform a high-throughput screen of natural products for chronic effects on glucose-stimulated insulin secretion. In this study, using multiple phenotypic analyses, we found that one of the top natural product hits, chromomycin A2 (CMA2), potently inhibited insulin secretion by at least three potential mechanisms: disruption of Wnt signaling, interference of β cell gene expression, and partial suppression of Ca2+ influx. Chronic treatment with CMA2 largely ablated glucose-stimulated insulin secretion even after washout, but it did not inhibit glucose-stimulated generation of ATP or Ca2+ influx. However, by using the KATP channel opener diazoxide, we uncovered defects in depolarization-induced Ca2+ influx that may contribute to the suppressed secretory response. Glucose-responsive ERK1/2 and S6 phosphorylation were also disrupted by chronic CMA2 treatment. By querying the FUSION bioinformatic database, we revealed that the phenotypic effects of CMA2 cluster with a number of Wnt–GSK3 pathway-related genes. Furthermore, CMA2 consistently decreased GSK3β phosphorylation and suppressed activation of a β-catenin activity reporter. CMA2 and a related compound, mithramycin, are known to have DNA interaction properties, possibly abrogating transcription factor binding to critical β cell gene promoters. We observed that CMA2 but not mithramycin suppressed expression of PDX1 and UCN3. However, neither expression of INSI/II nor insulin content was affected by chronic CMA2. The mechanisms of CMA2-induced insulin secretion defects may involve components both proximal and distal to Ca2+ influx. Therefore, CMA2 is an example of a chemical that can simultaneously disrupt β cell function through both noncytotoxic and cytotoxic mechanisms. Future therapeutic applications of CMA2 and similar aureolic acid analogues should consider their potential effects on pancreatic islet function.


2021 ◽  
Author(s):  
Yoshiko Matsumoto Ikushima ◽  
Motoharu Awazawa ◽  
Naoki Kobayashi ◽  
Sho Osonoi ◽  
Seiichi Takemiya ◽  
...  

In diabetic pathology, insufficiency in β-cell mass unable to meet peripheral insulin demand and functional defects of individual β cells to produce insulin are often concurrently observed, collectively causing hyperglycemia. Here we show that the phosphorylation of ERK1/2 is significantly decreased in the islets of <i>db/db</i> mice as well as in those of a cohort of subjects with type 2 diabetes. In mice with abrogation of ERK signaling in pancreatic β cells through deletion of <i>Mek1</i> and <i>Mek2</i>, glucose intolerance aggravates under high-fat diet-fed conditions due to insufficient insulin production with lower β-cell proliferation and reduced β-cell mass, while in individual β cells dampening of the number of insulin exocytosis events is observed, with the molecules involved in insulin exocytosis being less phosphorylated. These data reveal bifunctional roles for MEK/ERK signaling in β cells for glucose homeostasis, i.e., in regulating β-cell mass as well as in controlling insulin exocytosis in individual β cells, thus providing not only a novel perspective for the understanding of diabetes pathophysiology but also a potential clue for new drug development for diabetes treatment.


2020 ◽  
Author(s):  
Paula Maria Heister ◽  
Trevor Powell ◽  
Antony Galione

AbstractPancreatic β-cells release insulin upon a rise in blood glucose. The precise mechanisms of stimulus-secretion coupling, and its failure in Diabetes Mellitus Type 2, remain to be elucidated. The consensus model, as well as a class of currently prescribed anti-diabetic drugs, are based around the observation that glucose-evoked ATP production in β-cells leads to closure of cell membrane ATP-gated potassium (KATP) channels, plasma membrane depolarisation, Ca2+ influx, and finally the exocytosis of insulin granules (Ashcroft et al., 1984; Cook and Hales, 1984). However, it has been demonstrated by the inactivation of this pathway using genetic and pharmacological means that closure of the KATP channel alone may not be sufficient to explain all β-cell responses to glucose elevation (Henquin, 1998; Seghers et al., 2000). Here we show using total internal reflection fluorescence (TIRF) microscopy (Axelrod, 1981) that glucose as well as the Ca2+ mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP), known to operate in β-cells (Johnson and Misler, 2002; Masgrau et al., 2003), lead to highly localised elementary intracellular Ca2+ signals. These were found to be obscured by measurements of global Ca2+ signals and the action of powerful SERCA-based sequestration mechanisms at the endoplasmic reticulum (ER). This is the first demonstration of elemental Ca2+ signals in response to NAADP, although they have been suspected (Davis et al., 2020). Optical quantal analysis of these events reveals a unitary event amplitude equivalent to that of known elementary Ca2+ signalling events, inositol trisphosphate (IP3) receptor mediated blips (Parker et al., 1996; Parker and Ivorra, 1990), and ryanodine receptor mediated sparks (Cheng et al., 1993). We propose that a mechanism based on these highly localised intracellular Ca2+ signalling events mediated by NAADP may initially operate in β-cells when they respond to elevations in blood glucose.


Sign in / Sign up

Export Citation Format

Share Document