scholarly journals Deep Learning Model for Improving the Characterization of Coronavirus on Chest X-ray Images Using CNN

Author(s):  
Olaide N. Oyelade ◽  
Absalom E. Ezugwu

AbstractThe novel Coronavirus, also known as Covid19, is a pandemic that has weighed heavily on the socio-economic affairs of the world. Although researches into the production of relevant vaccine are being advanced, there is, however, a need for a computational solution to mediate the process of aiding quick detection of the disease. Different computational solutions comprised of natural language processing, knowledge engineering and deep learning have been adopted for this task. However, deep learning solutions have shown interesting performance compared to other methods. This paper therefore aims to advance the application deep learning technique to the problem of characterization and detection of novel coronavirus. The approach adopted in this study proposes a convolutional neural network (CNN) model which is further enhanced using the technique of data augmentation. The motive for the enhancement of the CNN model through the latter technique is to investigate the possibility of further improving the performances of deep learning models in detection of coronavirus. The proposed model is then applied to the COVID-19 X-ray dataset in this study which is the National Institutes of Health (NIH) Chest X-Ray dataset obtained from Kaggle for the purpose of promoting early detection and screening of coronavirus disease. Results obtained showed that our approach achieved a performance of 100% accuracy, recall/precision of 0.85, F-measure of 0.9, and specificity of 1.0. The proposed CNN model and data augmentation solution may be adopted in pre-screening suspected cases of Covid19 to provide support to the use of the well-known RT-PCR testing.

2020 ◽  
Author(s):  
Hao Quan ◽  
Xiaosong Xu ◽  
Tingting Zheng ◽  
Zhi Li ◽  
Mingfang Zhao ◽  
...  

Abstract Objective: A deep learning framework for detecting COVID-19 is developed, and a small amount of chest X-ray data is used to accurately screen COVID-19.Methods: In this paper, we propose a deep learning framework that integrates convolution neural network and capsule network. DenseNet and CapsNet fusion are used to give full play to their respective advantages, reduce the dependence of convolution neural network on a large amount of data, and can quickly and accurately distinguish COVID-19 from Non-COVID-19 through chest X-ray imaging.Results: A total of 1472 chest X-ray COVID-19 and non-COVID-19 images are used, this method can achieve an accuracy of 99.32% and a precision of 100%, with 98.55% sensitivity and 100% specificity.Conclusion: These results show that the deep fusion neural network DenseCapsNet has good performance in novel coronavirus pneumonia X-ray detection. We also prove through experiments that the detection performance of DenseCapsNet is not affected fundamentally by a lack of data augmentation and pre-training.


Author(s):  
Aditya Sharma ◽  
Arshdeep Singh Chudey ◽  
Mrityunjay Singh

The novel coronavirus (COVID-19), which started in the Wuhan province of China, prompted a major outbreak that culminated in a worldwide pandemic. Several cases are being recorded across the globe, with deaths being close to 2.5 million. The increased number of cases and the newness of such a pandemic has resulted in the hospitals being under-equipped leading to problems in diagnosis of the disease. From previous studies, radiography has proved to be the fastest testing method. A screening test using the x-ray scan of the chest region has proved to be effective. For this method, a trained radiologist is needed to detect the disease. Automating this process using deep learning models can prove to be effective. Due to the lack of large dataset, pre-trained CNN models are used in this study. Several models have been employed like VGG-16, Resnet-50, InceptionV3, and InceptionResnetV2. Resnet-50 provided the best accuracy of 98.3%. The performance evaluation has been done using metrics like receiver operating curve and confusion matrix.


2021 ◽  
Author(s):  
Connor Shorten ◽  
Taghi M. Khoshgoftaar ◽  
Borko Furht

Abstract Natural Language Processing (NLP) is one of the most captivating applications of Deep Learning. In this survey, we consider how the Data Augmentation training strategy can aid in its development. We begin with the major motifs of Data Augmentation summarized into strengthening local decision boundaries, brute force training, causality and counterfactual examples, and the distinction between meaning and form. We follow these motifs with a concrete list of augmentation frameworks that have been developed for text data. Deep Learning generally struggles with the measurement of generalization and characterization of overfitting. We highlight studies that cover how augmentations can construct test sets for generalization. NLP is at an early stage in applying Data Augmentation compared to Computer Vision. We highlight the key differences and promising ideas that have yet to be tested in NLP. For the sake of practical implementation, we describe tools that facilitate Data Augmentation such as the use of consistency regularization, controllers, and offline and online augmentation pipelines, to preview a few. Finally, we discuss interesting topics around Data Augmentation in NLP such as task-specific augmentations, the use of prior knowledge in self-supervised learning versus Data Augmentation, intersections with transfer and multi-task learning, and ideas for AI-GAs (AI-Generating Algorithms). We hope this paper inspires further research interest in Text Data Augmentation.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Okeke Stephen ◽  
Mangal Sain ◽  
Uchenna Joseph Maduh ◽  
Do-Un Jeong

This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.


COVID ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 403-415
Author(s):  
Abeer Badawi ◽  
Khalid Elgazzar

Coronavirus disease (COVID-19) is an illness caused by a novel coronavirus family. One of the practical examinations for COVID-19 is chest radiography. COVID-19 infected patients show abnormalities in chest X-ray images. However, examining the chest X-rays requires a specialist with high experience. Hence, using deep learning techniques in detecting abnormalities in the X-ray images is presented commonly as a potential solution to help diagnose the disease. Numerous research has been reported on COVID-19 chest X-ray classification, but most of the previous studies have been conducted on a small set of COVID-19 X-ray images, which created an imbalanced dataset and affected the performance of the deep learning models. In this paper, we propose several image processing techniques to augment COVID-19 X-ray images to generate a large and diverse dataset to boost the performance of deep learning algorithms in detecting the virus from chest X-rays. We also propose innovative and robust deep learning models, based on DenseNet201, VGG16, and VGG19, to detect COVID-19 from a large set of chest X-ray images. A performance evaluation shows that the proposed models outperform all existing techniques to date. Our models achieved 99.62% on the binary classification and 95.48% on the multi-class classification. Based on these findings, we provide a pathway for researchers to develop enhanced models with a balanced dataset that includes the highest available COVID-19 chest X-ray images. This work is of high interest to healthcare providers, as it helps to better diagnose COVID-19 from chest X-rays in less time with higher accuracy.


2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 669
Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Talha Anwar ◽  
Hind S. Alsaif ◽  
Sara Mhd. Bachar Chrouf ◽  
...  

The coronavirus pandemic (COVID-19) is disrupting the entire world; its rapid global spread threatens to affect millions of people. Accurate and timely diagnosis of COVID-19 is essential to control the spread and alleviate risk. Due to the promising results achieved by integrating machine learning (ML), particularly deep learning (DL), in automating the multiple disease diagnosis process. In the current study, a model based on deep learning was proposed for the automated diagnosis of COVID-19 using chest X-ray images (CXR) and clinical data of the patient. The aim of this study is to investigate the effects of integrating clinical patient data with the CXR for automated COVID-19 diagnosis. The proposed model used data collected from King Fahad University Hospital, Dammam, KSA, which consists of 270 patient records. The experiments were carried out first with clinical data, second with the CXR, and finally with clinical data and CXR. The fusion technique was used to combine the clinical features and features extracted from images. The study found that integrating clinical data with the CXR improves diagnostic accuracy. Using the clinical data and the CXR, the model achieved an accuracy of 0.970, a recall of 0.986, a precision of 0.978, and an F-score of 0.982. Further validation was performed by comparing the performance of the proposed system with the diagnosis of an expert. Additionally, the results have shown that the proposed system can be used as a tool that can help the doctors in COVID-19 diagnosis.


Author(s):  
A. Amyar ◽  
R. Modzelewski ◽  
S. Ruan

ABSTRACTThe fast spreading of the novel coronavirus COVID-19 has aroused worldwide interest and concern, and caused more than one million and a half confirmed cases to date. To combat this spread, medical imaging such as computed tomography (CT) images can be used for diagnostic. An automatic detection tools is necessary for helping screening COVID-19 pneumonia using chest CT imaging. In this work, we propose a multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Our motivation is to leverage useful information contained in multiple related tasks to help improve both segmentation and classification performances. Our architecture is composed by an encoder and two decoders for reconstruction and segmentation, and a multi-layer perceptron for classification. The proposed model is evaluated and compared with other image segmentation and classification techniques using a dataset of 1044 patients including 449 patients with COVID-19, 100 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.78 for the segmentation and an area under the ROC curve higher than 93% for the classification.


2020 ◽  
Author(s):  
Odysseas Kechagias-Stamatis ◽  
Nabil Aouf ◽  
John A. Koukos

AbstractThe outbreak of the novel coronavirus (COVID-19) disease has spurred a tremendous research boost aiming at controlling it. Under this scope, deep learning techniques have received even more attention as an asset to automatically detect patients infected by COVID-19 and reduce the doctor’s burden to manually assess medical imagery. Thus, this work considers a deep learning architecture that fuses the layers of current-state-of-the-art deep networks to produce a new structure-fused deep network. The advantages of our deep network fusion scheme are multifold, and ultimately afford an appealing COVID-19 automatic diagnosis that outbalances current deep learning methods. Indeed, evaluation on Computer Tomography (CT) and X-ray imagery considering a two-class (COVID-19/ non-COVID-19) and a four-class (COVID-19/ non-COVID-19/ Pneumonia bacterial / Pneumonia virus) classification problem, highlights the classification capabilities of our method attaining 99.3% and 100%, respectively.


2021 ◽  
Vol 11 (24) ◽  
pp. 11902
Author(s):  
Sonain Jamil ◽  
MuhibUr Rahman

Novel coronavirus, known as COVID-19, is a very dangerous virus. Initially detected in China, it has since spread all over the world causing many deaths. There are several variants of COVID-19, which have been categorized into two major groups. These groups are variants of concern and variants of interest. Variants of concern are more dangerous, and there is a need to develop a system that can detect and classify COVID-19 and its variants without touching an infected person. In this paper, we propose a dual-stage-based deep learning framework to detect and classify COVID-19 and its variants. CT scans and chest X-ray images are used. Initially, the detection is done through a convolutional neural network, and then spatial features are extracted with deep convolutional models, while handcrafted features are extracted from several handcrafted descriptors. Both spatial and handcrafted features are combined to make a feature vector. This feature vector is called the vocabulary of features (VoF), as it contains spatial and handcrafted features. This feature vector is fed as an input to the classifier to classify different variants. The proposed model is evaluated based on accuracy, F1-score, specificity, sensitivity, specificity, Cohen’s kappa, and classification error. The experimental results show that the proposed method outperforms all the existing state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document