scholarly journals A Dual-Stage Vocabulary of Features (VoF)-Based Technique for COVID-19 Variants’ Classification

2021 ◽  
Vol 11 (24) ◽  
pp. 11902
Author(s):  
Sonain Jamil ◽  
MuhibUr Rahman

Novel coronavirus, known as COVID-19, is a very dangerous virus. Initially detected in China, it has since spread all over the world causing many deaths. There are several variants of COVID-19, which have been categorized into two major groups. These groups are variants of concern and variants of interest. Variants of concern are more dangerous, and there is a need to develop a system that can detect and classify COVID-19 and its variants without touching an infected person. In this paper, we propose a dual-stage-based deep learning framework to detect and classify COVID-19 and its variants. CT scans and chest X-ray images are used. Initially, the detection is done through a convolutional neural network, and then spatial features are extracted with deep convolutional models, while handcrafted features are extracted from several handcrafted descriptors. Both spatial and handcrafted features are combined to make a feature vector. This feature vector is called the vocabulary of features (VoF), as it contains spatial and handcrafted features. This feature vector is fed as an input to the classifier to classify different variants. The proposed model is evaluated based on accuracy, F1-score, specificity, sensitivity, specificity, Cohen’s kappa, and classification error. The experimental results show that the proposed method outperforms all the existing state-of-the-art methods.

Author(s):  
Ali Mohammad Alqudah ◽  
Shoroq Qazan ◽  
Amin Alqudah

Abstract Since December 2019, the appearance of an outbreak of a novel coronavirus disease namely COVID-19 and which is previously known as 2019-nCoV. COVID-19 is a type of coronavirus that leads to the general destruction of respiratory systems and a severe respiratory symptom which are associated with highly Intensive Care Unit (ICU) admissions and death. Like any disease, the early diagnosis of coronavirus leads to limit its wide-spreading and increases the recovery rates of patients. The gold standard of COVID-19 detection is the real-time reverse transcription-polymerase chain reaction (RT-PCR) which has been used by the clinician to discover the presence or absence of this type of virus. The clinicians report that this technique has a low positive rate in the early stage of this disease. Based on this, the clinicians were forced to use another way to help in the early diagnosis of COVID-2019. So, the clinician's attention moved towards the medical imaging modalities especially the computed Tomography (CT) and X-ray chest images. Both modalities show that there is a change in the lungs in the case of COVID-19 that is different from any other type of pneumonic disease. Therefore, this research targeted toward employing different Artificial Intelligence (AI) techniques to propose a system for early detection of COVID-19 using chest X-ray images. These images are classified using different AI algorithms and a combination of them, then their performance was evaluated to recognize the best of them. These algorithms include a convolutional neural network (CNN), Softmax, support vector machine (SVM), Random Forest, and K nearest neighbor (KNN). Here CNN is into two scenarios, the first one to classify the X-ray images using a softmax classifier, and the second one to extract automated features from the images and pass these features to other classifiers (SVM, RFF, and KNN). According to the results, the performance of all classifiers is good and most of them record accuracy, sensitivity, specificity, and precision of more than 98%.


2020 ◽  
Author(s):  
Hao Quan ◽  
Xiaosong Xu ◽  
Tingting Zheng ◽  
Zhi Li ◽  
Mingfang Zhao ◽  
...  

Abstract Objective: A deep learning framework for detecting COVID-19 is developed, and a small amount of chest X-ray data is used to accurately screen COVID-19.Methods: In this paper, we propose a deep learning framework that integrates convolution neural network and capsule network. DenseNet and CapsNet fusion are used to give full play to their respective advantages, reduce the dependence of convolution neural network on a large amount of data, and can quickly and accurately distinguish COVID-19 from Non-COVID-19 through chest X-ray imaging.Results: A total of 1472 chest X-ray COVID-19 and non-COVID-19 images are used, this method can achieve an accuracy of 99.32% and a precision of 100%, with 98.55% sensitivity and 100% specificity.Conclusion: These results show that the deep fusion neural network DenseCapsNet has good performance in novel coronavirus pneumonia X-ray detection. We also prove through experiments that the detection performance of DenseCapsNet is not affected fundamentally by a lack of data augmentation and pre-training.


2020 ◽  
Author(s):  
Olaide N. Oyelade ◽  
Absalom E. Ezugwu

AbstractThe novel Coronavirus, also known as Covid19, is a pandemic that has weighed heavily on the socio-economic affairs of the world. Although researches into the production of relevant vaccine are being advanced, there is, however, a need for a computational solution to mediate the process of aiding quick detection of the disease. Different computational solutions comprised of natural language processing, knowledge engineering and deep learning have been adopted for this task. However, deep learning solutions have shown interesting performance compared to other methods. This paper therefore aims to advance the application deep learning technique to the problem of characterization and detection of novel coronavirus. The approach adopted in this study proposes a convolutional neural network (CNN) model which is further enhanced using the technique of data augmentation. The motive for the enhancement of the CNN model through the latter technique is to investigate the possibility of further improving the performances of deep learning models in detection of coronavirus. The proposed model is then applied to the COVID-19 X-ray dataset in this study which is the National Institutes of Health (NIH) Chest X-Ray dataset obtained from Kaggle for the purpose of promoting early detection and screening of coronavirus disease. Results obtained showed that our approach achieved a performance of 100% accuracy, recall/precision of 0.85, F-measure of 0.9, and specificity of 1.0. The proposed CNN model and data augmentation solution may be adopted in pre-screening suspected cases of Covid19 to provide support to the use of the well-known RT-PCR testing.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xin Wang ◽  
Yiyang Hu ◽  
Yanhong Luo ◽  
Wei Wang

Since the outbreak of Coronavirus disease 2019 (COVID-19), it has been spreading rapidly worldwide and has not yet been effectively controlled. Many researchers are studying novel Coronavirus pneumonia from chest X-ray images. In order to improve the detection accuracy, two modules sensitive to feature information, dual-path multiscale feature fusion module and dense depthwise separable convolution module, are proposed. Based on these two modules, a lightweight convolutional neural network model, D2-CovidNet, is designed to assist experts in diagnosing COVID-19 by identifying chest X-ray images. D2-CovidNet is tested on two public data sets, and its classification accuracy, precision, sensitivity, specificity, and F1-score are 94.56%, 95.14%, 94.02%, 96.61%, and 95.30%, respectively. Specifically, the precision, sensitivity, and specificity of the network for COVID-19 are 98.97%, 94.12%, and 99.84%, respectively. D2-CovidNet has fewer computation number and parameter number. Compared with other methods, D2-CovidNet can help diagnose COVID-19 more quickly and accurately.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110162
Author(s):  
Fengxia Zeng ◽  
Yong Cai ◽  
Yi Guo ◽  
Weiguo Chen ◽  
Min Lin ◽  
...  

As the coronavirus disease 2019 (COVID-19) epidemic spreads around the world, the demand for imaging examinations increases accordingly. The value of conventional chest radiography (CCR) remains unclear. In this study, we aimed to investigate the diagnostic value of CCR in the detection of COVID-19 through a comparative analysis of CCR and CT. This study included 49 patients with 52 CT images and chest radiographs of pathogen-confirmed COVID-19 cases and COVID-19-suspected cases that were found to be negative (non-COVID-19). The performance of CCR in detecting COVID-19 was compared to CT imaging. The major signatures that allowed for differentiation between COVID-19 and non-COVID-19 cases were also evaluated. Approximately 75% (39/52) of images had positive findings on the chest x-ray examinations, while 80.7% (42/52) had positive chest CT scans. The COVID-19 group accounted for 88.4% (23/26) of positive chest X-ray examinations and 96.1% (25/26) of positive chest CT scans. The sensitivity, specificity, and accuracy of CCR for abnormal shadows were 88%, 80%, and 87%, respectively, for all patients. For the COVID-19 group, the accuracy of CCR was 92%. The primary signature on CCR was flocculent shadows in both groups. The shadows were primarily in the bi-pulmonary, which was significantly different from non-COVID-19 patients ( p = 0.008). The major CT finding of COVID-19 patients was ground-glass opacities in both lungs, while in non-COVID-19 patients, consolidations combined with ground-glass opacities were more common in one lung than both lungs ( p = 0.0001). CCR showed excellent performance in detecting abnormal shadows in patients with confirmed COVID-19. However, it has limited value in differentiating COVID-19 patients from non-COVID-19 patients. Through the typical epidemiological history, laboratory examinations, and clinical symptoms, combined with the distributive characteristics of shadows, CCR may be useful to identify patients with possible COVID-19. This will allow for the rapid identification and quarantine of patients.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2206
Author(s):  
Dana Li ◽  
Lea Marie Pehrson ◽  
Carsten Ammitzbøl Lauridsen ◽  
Lea Tøttrup ◽  
Marco Fraccaro ◽  
...  

Our systematic review investigated the additional effect of artificial intelligence-based devices on human observers when diagnosing and/or detecting thoracic pathologies using different diagnostic imaging modalities, such as chest X-ray and CT. Peer-reviewed, original research articles from EMBASE, PubMed, Cochrane library, SCOPUS, and Web of Science were retrieved. Included articles were published within the last 20 years and used a device based on artificial intelligence (AI) technology to detect or diagnose pulmonary findings. The AI-based device had to be used in an observer test where the performance of human observers with and without addition of the device was measured as sensitivity, specificity, accuracy, AUC, or time spent on image reading. A total of 38 studies were included for final assessment. The quality assessment tool for diagnostic accuracy studies (QUADAS-2) was used for bias assessment. The average sensitivity increased from 67.8% to 74.6%; specificity from 82.2% to 85.4%; accuracy from 75.4% to 81.7%; and Area Under the ROC Curve (AUC) from 0.75 to 0.80. Generally, a faster reading time was reported when radiologists were aided by AI-based devices. Our systematic review showed that performance generally improved for the physicians when assisted by AI-based devices compared to unaided interpretation.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S424-S425
Author(s):  
Dan Ding ◽  
Anna Stachel ◽  
Eduardo Iturrate ◽  
Michael Phillips

Abstract Background Pneumonia (PNU) is the second most common nosocomial infection in the United States and is associated with substantial morbidity and mortality. While definitions from CDC were developed to increase the reliability of surveillance data, reduce the burden of surveillance in healthcare facilities, and enhance the utility of surveillance data for improving patient safety - the algorithm is still laborious. We propose an implementation of a refined algorithm script which combines two CDC definitions with the use of natural language processing (NLP), a tool which relies on pattern matching to determine whether a condition of interest is reported as present or absent in a report, to automate PNU surveillance. Methods Using SAS v9.4 to write a query, we used a combination of National Healthcare Safety Network’s (NHSN) PNU and ventilator-associated event (VAE) definitions that use discrete fields found in electronic medical records (EMR) and trained an NLP tool to determine whether chest x-ray report was indicative of PNU (Fig1). To validate, we assessed sensitivity/specificity of NLP tool results compared with clinicians’ interpretations. Results The NLP tool was highly accurate in classifying the presence of PNU in chest x-rays. After training the NLP tool, there were only 4% discrepancies between NLP tool and clinicians interpretations of 223 x-ray reports - sensitivity 92.2% (81.1–97.8), specificity 97.1% (93.4–99.1), PPV 90.4% (79.0–96.8), NPV 97.7% (94.1–99.4). Combining the automated use of discrete EMR fields with NLP tool significantly reduces the time spent manually reviewing EMRs. A manual review for PNU without automation requires approximately 10 minutes each day per admission. With a monthly average of 2,350 adult admissions at our hospital and 16,170 patient-days for admissions with at least 2 days, the algorithm saves approximately 2,695 review hours. Conclusion The use of discrete EMR fields with an NLP tool proves to be a timelier, cost-effective yet accurate alternative to manual PNU surveillance review. By allowing an automated algorithm to review PNU, timely reports can be sent to units about individual cases. Compared with traditional CDC surveillance definitions, an automated tool allows real-time critical review for infection and prevention activities. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 20 (S14) ◽  
Author(s):  
Qingfeng Wang ◽  
Qiyu Liu ◽  
Guoting Luo ◽  
Zhiqin Liu ◽  
Jun Huang ◽  
...  

Abstract Background Pneumothorax (PTX) may cause a life-threatening medical emergency with cardio-respiratory collapse that requires immediate intervention and rapid treatment. The screening and diagnosis of pneumothorax usually rely on chest radiographs. However, the pneumothoraces in chest X-rays may be very subtle with highly variable in shape and overlapped with the ribs or clavicles, which are often difficult to identify. Our objective was to create a large chest X-ray dataset for pneumothorax with pixel-level annotation and to train an automatic segmentation and diagnosis framework to assist radiologists to identify pneumothorax accurately and timely. Methods In this study, an end-to-end deep learning framework is proposed for the segmentation and diagnosis of pneumothorax on chest X-rays, which incorporates a fully convolutional DenseNet (FC-DenseNet) with multi-scale module and spatial and channel squeezes and excitation (scSE) modules. To further improve the precision of boundary segmentation, we propose a spatial weighted cross-entropy loss function to penalize the target, background and contour pixels with different weights. Results This retrospective study are conducted on a total of eligible 11,051 front-view chest X-ray images (5566 cases of PTX and 5485 cases of Non-PTX). The experimental results show that the proposed algorithm outperforms the five state-of-the-art segmentation algorithms in terms of mean pixel-wise accuracy (MPA) with $$0.93\pm 0.13$$ 0.93 ± 0.13 and dice similarity coefficient (DSC) with $$0.92\pm 0.14$$ 0.92 ± 0.14 , and achieves competitive performance on diagnostic accuracy with 93.45% and $$F_1$$ F 1 -score with 92.97%. Conclusion This framework provides substantial improvements for the automatic segmentation and diagnosis of pneumothorax and is expected to become a clinical application tool to help radiologists to identify pneumothorax on chest X-rays.


Sign in / Sign up

Export Citation Format

Share Document