scholarly journals Interactions between axon-like projections extended by Drosophila Follicle Stem Cells dictate cell fate decisions

2020 ◽  
Author(s):  
Eric H. Lee ◽  
Daniel Zinshteyn ◽  
Melissa Wang ◽  
Jessica Reinach ◽  
Cindy Chau ◽  
...  

AbstractStem cells cycle between periods of quiescence and proliferation to promote healthy tissue aging. Once proliferation is initiated, mechanisms that control the balance between self-renewal and differentiation must be engaged to ensure maintenance of stem cell pools until the next quiescent cycle occurs. Here, we demonstrate that dynamic axon-like projections extended by Follicle Stem Cells (FSCs) in the Drosophila ovary control the self-renewal-differentiation balance. Known axon growth regulators still life and sickie are necessary and sufficient for FSC projection growth, mediating organization of germline cyst architecture during follicle formation, controlling targeting of projections to FSCs or germ cells, and regulating expression of the cell fate determinants Eyes Absent (Eya) and Castor (Cas). Our results support a model in which FSC projections function similarly to axons, providing structural organization to a dynamic organ while mediating communication between distinct cell types to effect the key cell fate decision to self-renew or differentiate.

2019 ◽  
Vol 20 (2) ◽  
pp. 455 ◽  
Author(s):  
Felix Beyer ◽  
Iria Samper Agrelo ◽  
Patrick Küry

The adult mammalian central nervous system (CNS) is generally considered as repair restricted organ with limited capacities to regenerate lost cells and to successfully integrate them into damaged nerve tracts. Despite the presence of endogenous immature cell types that can be activated upon injury or in disease cell replacement generally remains insufficient, undirected, or lost cell types are not properly generated. This limitation also accounts for the myelin repair capacity that still constitutes the default regenerative activity at least in inflammatory demyelinating conditions. Ever since the discovery of endogenous neural stem cells (NSCs) residing within specific niches of the adult brain, as well as the description of procedures to either isolate and propagate or artificially induce NSCs from various origins ex vivo, the field has been rejuvenated. Various sources of NSCs have been investigated and applied in current neuropathological paradigms aiming at the replacement of lost cells and the restoration of functionality based on successful integration. Whereas directing and supporting stem cells residing in brain niches constitutes one possible approach many investigations addressed their potential upon transplantation. Given the heterogeneity of these studies related to the nature of grafted cells, the local CNS environment, and applied implantation procedures we here set out to review and compare their applied protocols in order to evaluate rate-limiting parameters. Based on our compilation, we conclude that in healthy CNS tissue region specific cues dominate cell fate decisions. However, although increasing evidence points to the capacity of transplanted NSCs to reflect the regenerative need of an injury environment, a still heterogenic picture emerges when analyzing transplantation outcomes in injury or disease models. These are likely due to methodological differences despite preserved injury environments. Based on this meta-analysis, we suggest future NSC transplantation experiments to be conducted in a more comparable way to previous studies and that subsequent analyses must emphasize regional heterogeneity such as accounting for differences in gray versus white matter.


2021 ◽  
Author(s):  
Haoli Ying ◽  
Ruolang Pan ◽  
Ye Chen

Mesenchymal stem cells (MSCs) are progenitors of connective tissues, which have emerged as important tools for tissue engineering owing to their differentiation potential in various cell types. The therapeutic utility of MSCs hinges upon our understanding of the molecular mechanisms involved in cellular fate decisions. Thus, the elucidation of the regulation of MSC differentiation has attracted increasing attention in recent years. A variety of external cues contribute to the process of MSC differentiation, including chemical, physical, and biological factors. Among the multiple factors that are known to affect cell fate decisions, the epigenetic regulation of MSC differentiation has become a research hotspot. In this chapter, we summarize recent progress in the determination of the effects of epigenetic modification on the multilineage differentiation of MSCs.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1349-1349
Author(s):  
Emmanuelle Passegue ◽  
Amy J. Wagers ◽  
Sylvie Giuriato ◽  
Wade C. Anderson ◽  
Irving L. Weissman

Abstract The blood is a perpetually renewing tissue seeded by a rare population of adult bone marrow hematopoietic stem cells (HSC). During steady-state hematopoiesis, the HSC population is relatively quiescent but constantly maintains a low numbers of cycling cells that differentiate to produce the various lineage of mature blood cells. However, in response to hematological stress, the entire HSC population can be recruited into cycle to self-renew and regenerate the blood-forming system. HSC proliferation is therefore highly adaptative and requires appropriate regulation of cell cycle progression to drive both differentiation-associated and self-renewal-associated proliferation, without depletion of the stem cell pool. Although the molecular events controlling HSC proliferation are still poorly understood, they are likely determined, at least in part, by regulated expression and/or function of components and regulators of the cell cycle machinery. Here, we demonstrate that the long-term self-renewing HSC (defined as Lin−/c-Kit+/Sca-1+/Thy1.1int/Flk2−) exists in two distinct states that are both equally important for their in vivo functions as stem cells: a numerically dominant quiescent state, which is critical for HSC function in hematopoietic reconstitution; and a proliferative state, which represents almost a fourth of this population and is essential for HSC functions in differentiation and self-renewal. We show that when HSC exit quiescence and enter G1 as a prelude to cell division, at least two critical events occur: first, during the G1 and subsequent S-G2/M phases, they temporarily lose efficient in vivo engraftment activity, while retaining in vitro differentiation potential; and second, they select the particular cell cycle proteins that are associated with specific developmental outcomes (self-renewal vs. differentiation) and developmental fates (myeloid vs. lymphoid). Together, these findings provide a direct link between HSC proliferation, cell cycle regulation and cell fate decisions that have critical implications for both the therapeutic use of HSC and the understanding of leukemic transformation.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhong-Yan Chen ◽  
Fei Chen ◽  
Nan Cao ◽  
Zhi-Wen Zhou ◽  
Huang-Tian Yang

MicroRNAs (miRNAs) play important roles in cell fate decisions. However, the miRNAs and their targets involved in the regulation of cardiac lineage specification are largely unexplored. Here, we report novel functions of miR-142-3p in the regulation of cardiomyocyte differentiation from mouse embryonic stem cells (mESCs). With a miRNA array screen, we identified a number of miRNAs significantly changed during mESC differentiation into the mesodermal and cardiac progenitor cells, and miR-142-3p was one among the markedly downregulated miRNAs. Ectopic expression and inhibition of miR-142-3p did not alter the characteristics of undifferentiated ESCs, whereas ectopic expression of miR-142-3p impaired cardiomyocyte formation. In addition, ectopic expression of miR-142-3p inhibited the expression of a cardiac mesodermal marker gene Mesp1 and downstream cardiac transcription factors Nkx2.5, Tbx5, and Mef2c but not the expression of three germ layer-specific genes. We further demonstrated that miR-142-3p targeted the 3′-untranslated region of Mef2c. These results reveal miR-142-3p as an important regulator of early cardiomyocyte differentiation. Our findings provide new knowledge for further understanding of roles and mechanisms of miRNAs as critical regulators of cardiomyocyte differentiation.


Author(s):  
Yuting Fu ◽  
Fangyuan Liu ◽  
Shuo Cao ◽  
Jia Zhang ◽  
Huizhi Wang ◽  
...  

3-hydroxybutyrate dehydrogenase-2 (Bdh2), a short-chain dehydrogenase, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore, playing a key role in iron homeostasis, energy metabolism and apoptosis. However, the function of Bdh2 in embryonic stem cells (ESCs) remains unknown. To gain insights into the role of Bdh2 on pluripotency and cell fate decisions of mouse ESCs, we generated Bdh2 homozygous knockout lines for both mouse advanced embryonic stem cell (ASC) and ESC using CRISPR/Cas9 genome editing technology. Bdh2 deficiency in both ASCs and ESCs had no effect on expression of core pluripotent transcription factors and alkaline phosphatase activity, suggesting dispensability of Bdh2 for self-renewal and pluripotency of ESCs. Interestingly, cells with Bdh2 deficiency exhibited potency of endoderm differentiation in vitro; with upregulated endoderm associated genes revealed by RNA-seq and RT-qPCR. We further demonstrate that Bdh2 loss inhibited expression of multiple methyltransferases (DNMTs) at both RNA and protein level, suggesting that Bdh2 may be essentially required to maintain DNA methylation in ASCs and ESCs. Overall, this study provides valuable data and resources for understanding how Bdh2 regulate earliest cell fate decision and DNA methylation in ASCs/ESCs.


Author(s):  
Dong Keon Kim ◽  
Jang-Seok Lee ◽  
Eun Young Lee ◽  
Hansol Jang ◽  
Suji Han ◽  
...  

AbstractSox2 is a core transcription factor in embryonic stem cells (ESCs), and O-GlcNAcylation is a type of post-translational modification of nuclear-cytoplasmic proteins. Although both factors play important roles in the maintenance and differentiation of ESCs and the serine 248 (S248) and threonine 258 (T258) residues of Sox2 are modified by O-GlcNAcylation, the function of Sox2 O-GlcNAcylation is unclear. Here, we show that O-GlcNAcylation of Sox2 at T258 regulates mouse ESC self-renewal and early cell fate. ESCs in which wild-type Sox2 was replaced with the Sox2 T258A mutant exhibited reduced self-renewal, whereas ESCs with the Sox2 S248A point mutation did not. ESCs with the Sox2 T258A mutation heterologously introduced using the CRISPR/Cas9 system, designated E14-Sox2TA/WT, also exhibited reduced self-renewal. RNA sequencing analysis under self-renewal conditions showed that upregulated expression of early differentiation genes, rather than a downregulated expression of self-renewal genes, was responsible for the reduced self-renewal of E14-Sox2TA/WT cells. There was a significant decrease in ectodermal tissue and a marked increase in cartilage tissue in E14-Sox2TA/WT-derived teratomas compared with normal E14 ESC-derived teratomas. RNA sequencing of teratomas revealed that genes related to brain development had generally downregulated expression in the E14-Sox2TA/WT-derived teratomas. Our findings using the Sox2 T258A mutant suggest that Sox2 T258 O-GlcNAc has a positive effect on ESC self-renewal and plays an important role in the proper development of ectodermal lineage cells. Overall, our study directly links O-GlcNAcylation and early cell fate decisions.


Author(s):  
Satish Kumar Tiwari ◽  
Sudip Mandal

Over the years, Drosophila has served as a wonderful genetically tractable model system to unravel various facets of tissue-resident stem cells in their microenvironment. Studies in different stem and progenitor cell types of Drosophila have led to the discovery of cell-intrinsic and extrinsic factors crucial for stem cell state and fate. Though initially touted as the ATP generating machines for carrying various cellular processes, it is now increasingly becoming clear that mitochondrial processes alone can override the cellular program of stem cells. The last few years have witnessed a surge in our understanding of mitochondria’s contribution to governing different stem cell properties in their subtissular niches in Drosophila. Through this review, we intend to sum up and highlight the outcome of these in vivo studies that implicate mitochondria as a central regulator of stem cell fate decisions; to find the commonalities and uniqueness associated with these regulatory mechanisms.


2013 ◽  
Vol 201 (3) ◽  
pp. 409-425 ◽  
Author(s):  
An Zeng ◽  
Yong-Qin Li ◽  
Chen Wang ◽  
Xiao-Shuai Han ◽  
Ge Li ◽  
...  

Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED–HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3253
Author(s):  
Kamini Kaushal ◽  
Suresh Ramakrishna

Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.


Sign in / Sign up

Export Citation Format

Share Document