scholarly journals Role of BMP signaling during early development of the annelid Capitella teleta

2020 ◽  
Author(s):  
Nicole B. Webster ◽  
Michele Corbet ◽  
Abhinav Sur ◽  
Néva P. Meyer

AbstractThe mechanisms regulating nervous system development are still unknown for a wide variety of taxa. In insects and vertebrates, bone morphogenetic protein (BMP) signaling is known to play a key role in both neural specification and dorsal-ventral (D-V) axis formation, leading to speculation about the conserved evolution of nervous systems. Studies outside insects and vertebrates show a more diverse picture of what, if any role, BMP signaling plays in neural development across Bilateria. This is especially true in the morphologically diverse Spiralia (~Lophotrochozoa). Despite several studies of D-V axis formation and neural induction in spiralians, there is no consensus for how these two processes are related, or whether BMP signaling may have played an ancestral role in either process. Here we incubated larvae of the sedentary annelid Capitella teleta in BMP4 protein at various cleavage stages to determine the role of BMP signaling during early development. Adding exogenous BMP protein to early-cleaving C. teleta embryos had a striking effect on formation of the brain, eyes, and foregut in a time-dependent manner. However, adding BMP did not block neural specification of the brain or VNC or block formation of the D-V axis. We identified three key time windows of BMP activity, and hypothesize that BMP may cause trans-fate switching of blastomere quadrant identities in at least one time window. 1. Early treatment around 2q caused the loss of the eyes, radialization of the brain, and a reduction of the foregut, which we interpret as a loss of A-, B- and C-quadrant identities with a possible trans-fate switch to a D-quadrant identity. 2. Treatment after 4q induced formation of a third ectopic brain lobe, eye, and foregut lobe, which we interpret as a trans-fate switch of B-quadrant micromeres to a C-quadrant identity. 3. Continuous BMP treatment from early cleavage through mid-larval stages resulted in a modest expansion of Ct-chrdl expression in the dorsal ectoderm and a concomitant loss of the ventral midline (neurotroch ciliary band). Loss of the ventral midline was accompanied by a collapse of the bilaterally-symmetric VNC although the total amount of neural tissue did not appear to be greatly affected. Our results compared to those from other annelids and molluscs suggest that BMP signaling was not ancestrally involved in delimiting neural tissue or establishing the D-V axis in the last common ancestor of annelids. However, the effects of ectopic BMP on quadrant-identity during cleavage stages may represent a very early ‘organizing’ function in the context of spiralian development. Ultimately, studies on a wider range of spiralian taxa are needed to determine if the ability of BMP signaling to block neural induction and help establish the D-V axis was lost within Annelida or if BMP signaling gained these functions multiple times across Bilateria. Ultimately, these comparisons will give us insight into the evolutionary origins of centralized nervous systems and body plans.

Author(s):  
Nicole B. Webster ◽  
Michele Corbet ◽  
Abhinav Sur ◽  
Néva P. Meyer

Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1637-1647 ◽  
Author(s):  
S.Y. Sokol ◽  
J. Klingensmith ◽  
N. Perrimon ◽  
K. Itoh

Signaling factors of the Wnt proto-oncogene family are implicated in dorsal axis formation during vertebrate development, but the molecular mechanism of this process is not known. Studies in Drosophila have indicated that the dishevelled gene product is required for wingless (Wnt1 homolog) signal transduction. We demonstrate that injection of mRNA encoding a Xenopus homolog of dishevelled (Xdsh) into prospective ventral mesodermal cells triggers a complete dorsal axis formation in Xenopus embryos. Lineage tracing experiments show that cells derived from the injected blastomere contribute to anterior and dorsal structures of the induced axis. In contrast to its effect on mesoderm, overexpression of Xdsh mRNA in prospective ectodermal cells triggers anterior neural tissue differentiation. These studies suggest that Wnt signal transduction pathway is conserved between Drosophila and vertebrates and point to a role for maternal Xdsh product in dorsal axis formation and in neural induction.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Bernard Weiss

Contamination of the environment by metals is recognized as a threat to health. One of their targets is the brain, and the adverse functional effects they induce are reflected by neurobehavioral assessments. Lead, manganese, and methylmercury are the metal contaminants linked most comprehensively to such disorders. Because many of these adverse effects can appear later in life, clues to the role of metals as risk factors for neurodegenerative disorders should be sought in the exposure histories of aging populations. A review of the available literature offers evidence that all three metals can produce, in advanced age, manifestations of neurobehavioral dysfunction associated with neurodegenerative disease. Among the critical unresolved questions is timing; that is, during which periods of the lifespan, including early development, do environmental exposures lay the foundations for their ultimate effects?


Author(s):  
J.E. Johnson

Although neuroaxonal dystrophy (NAD) has been examined by light and electron microscopy for years, the nature of the components in the dystrophic axons is not well understood. The present report examines nucleus gracilis and cuneatus (the dorsal column nuclei) in the brain stem of aging mice.Mice (C57BL/6J) were sacrificed by aldehyde perfusion at ages ranging from 3 months to 23 months. Several brain areas and parts of other organs were processed for electron microscopy.At 3 months of age, very little evidence of NAD can be discerned by light microscopy. At the EM level, a few axons are found to contain dystrophic material. By 23 months of age, the entire nucleus gracilis is filled with dystrophic axons. Much less NAD is seen in nucleus cuneatus by comparison. The most recurrent pattern of NAD is an enlarged profile, in the center of which is a mass of reticulated material (reticulated portion; or RP).


2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.


2009 ◽  
Vol 150 (46) ◽  
pp. 2101-2109 ◽  
Author(s):  
Péter Csécsei ◽  
Anita Trauninger ◽  
Sámuel Komoly ◽  
Zsolt Illés

The identification of autoantibodies generated against the brain isoform water channel aquaporin4 in the sera of patients, changed the current diagnostic guidelines and concept of neuromyelitis optica (NMO). In a number of cases, clinical manifestation is spatially limited to myelitis or relapsing optic neuritis creating a diverse. NMO spectrum. Since prevention of relapses provides the only possibility to reduce permanent disability, early diagnosis and treatment is mandatory. In the present study, we discuss the potential role of neuroimaging and laboratory tests in differentiating the NMO spectrum from other diseases, as well as the diagnostic procedures and therapeutic options. We also present clinical cases, to provide examples of different clinical settings, diagnostic procedures and therapeutic decisions.


Sign in / Sign up

Export Citation Format

Share Document