scholarly journals A new fish-specific gene evolves new functions in cichlid fishes

2020 ◽  
Author(s):  
Langyu Gu ◽  
Chenzheng Li ◽  
Xiaobing Mao ◽  
Zongfang Wei ◽  
Youkui Huang ◽  
...  

AbstractGenes whose dysfunction does not affect normal survival are common. Are they only meaningless residues during evolution? Here, we identified a new fish-specific gene, which we named lg. Gene knockout resulted in no obvious phenotype in zebrafish, but lg evolved an amino acid mutation that was under positive selection in the modern haplochromine (MH) cichlid fish lineage, the well-known adaptive radiative lineage. Moreover, the cichlid fish-specific upstream region of lg drove new eGFP expression in tissues related to adaptation. Noticeably, this homologous region from different cichlid fishes drove different patterns, which is simply due to three MH-segregated SNP mutations that are predicted to bind a hormone-related transcription factor. We thus revealed an initially redundant gene evolving new functions in an adaptive radiative lineage. This further illuminates the mechanism of the emergence of new gene functions with respect to evo-devo in a broad way.

2021 ◽  
Author(s):  
Ana R Moshkovsky ◽  
Marc W Kirschner

Axin is one of two essential scaffolds in the canonical Wnt pathway that converts signals at the plasma membrane to signals inhibiting the degradation of β-catenin, leading to its accumulation and specific gene activation. In vertebrates there are two forms of Axin, Axin1 and Axin2, which are similar at the protein level and genetically redundant. We show here that differential regulation of the two genes on the transcriptional and proteostatic level confers robustness and differential responsiveness that can be used in tissue specific regulation. Such subtle features may distinguish other redundant gene pairs that are commonly found in vertebrates through gene knockout experiments.


2011 ◽  
Vol 439 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Dean P. Staus ◽  
Joan M. Taylor ◽  
Christopher P. Mack

It is clear that RhoA activates the DRF (diaphanous-related formin) mDia2 by disrupting the molecular interaction between the DAD (diaphanous autoregulatory domain) and the DID (diaphanous inhibitory domain). Previous studies indicate that a basic motif within the DAD contributes to mDia2 auto-inhibition, and results shown in the present study suggest these residues bind a conserved acidic region within the DID. Furthermore, we demonstrate that mDia2 is phosphorylated by ROCK (Rho-kinase) at two conserved residues (Thr1061 and Ser1070) just C-terminal to the DAD basic region. Phosphomimetic mutations to these residues in the context of the full-length molecule enhanced mDia2 activity as measured by increased actin polymerization, SRF (serum response factor)-dependent smooth muscle-specific gene transcription, and nuclear localization of myocardin-related transcription factor B. Biochemical and functional data indicate that the T1061E/S1070E mutation significantly inhibited the ability of DAD to interact with DID and enhanced mDia2 activation by RhoA. Taken together, the results of the present study indicate that ROCK-dependent phosphorylation of the mDia2 DAD is an important determinant of mDia2 activity and that this signalling mechanism affects actin polymerization and smooth muscle cell-specific gene expression.


1993 ◽  
Vol 13 (9) ◽  
pp. 5829-5842
Author(s):  
P Zheng ◽  
D S Fay ◽  
J Burton ◽  
H Xiao ◽  
J L Pinkham ◽  
...  

SPK1 was originally discovered in an immunoscreen for tyrosine-protein kinases in Saccharomyces cerevisiae. We have used biochemical and genetic techniques to investigate the function of this gene and its encoded protein. Hybridization of an SPK1 probe to an ordered genomic library showed that SPK1 is adjacent to PEP4 (chromosome XVI L). Sporulation of spk1/+ heterozygotes gave rise to spk1 spores that grew into microcolonies but could not be further propagated. These colonies were greatly enriched for budded cells, especially those with large buds. Similarly, eviction of CEN plasmids bearing SPK1 from cells with a chromosomal SPK1 disruption yielded viable cells with only low frequency. Spk1 protein was identified by immunoprecipitation and immunoblotting. It was associated with protein-Ser, Thr, and Tyr kinase activity in immune complex kinase assays. Spk1 was localized to the nucleus by immunofluorescence. The nucleotide sequence of the SPK1 5' noncoding region revealed that SPK1 contains two MluI cell cycle box elements. These elements confer S-phase-specific transcription to many genes involved in DNA synthesis. Northern (RNA) blotting of synchronized cells verified that the SPK1 transcript is coregulated with other MluI box-regulated genes. The SPK1 upstream region also includes a domain highly homologous to sequences involved in induction of RAD2 and other excision repair genes by agents that induce DNA damage. spk1 strains were hypersensitive to UV irradiation. Taken together, these findings indicate that SPK1 is a dual-specificity (Ser/Thr and Tyr) protein kinase that is essential for viability. The cell cycle-dependent transcription, presence of DNA damage-related sequences, requirement for UV resistance, and nuclear localization of Spk1 all link this gene to a crucial S-phase-specific role, probably as a positive regulator of DNA synthesis.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Mattia Quattrocelli ◽  
Michelle Wintzinger ◽  
Karen Miz

Glucocorticoid steroids are circadian regulators of energy balance. However, the specific direct effects of glucocorticoids on heart metabolism remain unresolved. Moreover, the impact of circadian time-of-intake on glucocorticoid pharmacology is still unknown. Here, we investigated whether circadian time of exposure gates the effects of synthetic glucocorticoids on heart bioenergetics. We compared the effects of diurnal versus nocturnal glucocorticoids in heart tissue and mitochondria from wildtype mice, controlling the subjective circadian time of drug injection. To avoid interferences from other tissues, we developed an ex vivo system to interrogate the mitochondrial respiratory capacity rate (state III/state IV) in isolated hearts. We found that diurnal but not nocturnal pulse of the glucocorticoid prednisone increased the mitochondrial respiratory capacity rate in heart. This correlated with circadian-restricted effects on mitochondrial abundance. This was remarkable as it contrasts the circadian fluctuations of endogenous glucocorticoids. Using transgenic mice with inducible cardiac-specific gene knockout, we found that the bioenergetic effects of diurnal-restricted prednisone were dependent on the glucocorticoid receptor and its co-factor Kruppel-like factor 15. Considering the bioenergetic decline that hallmarks the aging heart, we asked whether these circadian-gated effects were applicable to aged mice. We therefore treated 24 months-old mice for 12 weeks with a diurnal-restricted regimen of prednisone. Compared to vehicle, diurnal prednisone increased mitochondrial respiration along with NAD + and ATP content in aged hearts. Moreover, lipidomic profiling of myocardial tissue showed that the vast majority of lipids were downregulated after treatment, including triacylglycerols, suggesting a functional coupling between lipid utilization and mitochondrial oxidation in treated hearts. We also found that diurnal-restricted prednisone rescued bioenergetics and improved function in diabetic hearts from db/db mice. In summary, our data indicate that glucocorticoids regulate cardiac bioenergetics according to circadian-time of intake, supporting a role for chrono-pharmacology in aged and diabetic hearts.


2004 ◽  
Vol 5 (3) ◽  
pp. 219-226 ◽  
Author(s):  
Satoko Arai ◽  
Christina Minjares ◽  
Seiho Nagafuchi ◽  
Toru Miyazaki

The manipulation of a specific gene in NOD mice, the best animal model for insulin-dependent diabetes mellitus (IDDM), must allow for the precise characterization of the functional involvement of its encoded molecule in the pathogenesis of the disease. Although this has been attempted by the cross-breeding of NOD mice with many gene knockout mice originally created on the 129 or C57BL/6 strain background, the interpretation of the resulting phenotype(s) has often been confusing due to the possibility of a known or unknown disease susceptibility locus (e.g.,Iddlocus) cosegregating with the targeted gene from the diabetes-resistant strain. Therefore, it is important to generate mutant mice on a pure NOD background by using NOD-derived embryonic stem (ES) cells. By using the NOD ES cell line established by Nagafuchi and colleagues in 1999 (FEBSLett., 455, 101–104), the authors reexamined various conditions in the context of cell culture, DNA transfection, and blastocyst injection, and achieved a markedly improved transmission efficiency of these NOD ES cells into the mouse germ line. These modifications will enable gene targeting on a “pure” NOD background with high efficiency, and contribute to clarifying the physiological roles of a variety of genes in the disease course of IDDM.


2019 ◽  
Author(s):  
Pascal I. Hablützel ◽  
Robert B. Huanto

AbstractIn comparison with the Bolivian Amazon, the ichthyofauna of the La Plata drainage of Bolivia received relatively little attention historically. Until now, 14 species of cichlid fish have been registered from this area. After an exhaustive review of museum collections (Museo de Historia Natural Noel Kempff Mercado y Colección Boliviana de Fauna), we can report three additional species: Astronotus crassipinnis (Heckel, 1840), Mesonauta festivus (Heckel, 1840) and Satanoperca pappaterra (Heckel, 1840). Four other species, which have been listed in previous publications, can be confirmed for the La Plata drainage of Bolivia based on the examination of voucher specimens: Aequidens plagiozonatus Kullander, 1984, Apistogramma commbrae (Regan, 1906), A. trifasciata (Eigenmann & Kennedy, 1903) and Crenicichla vittata Heckel, 1840. As such, 16 of the 17 species can be referenced with voucher specimens in museum collections. We also provide an identification key for the cichlid fish species of the study area.


2000 ◽  
Vol 279 (3) ◽  
pp. F426-F439 ◽  
Author(s):  
Erding Hu ◽  
Zunxuan Chen ◽  
Todd Fredrickson ◽  
Miklos Gellai ◽  
Malcolm Jugus ◽  
...  

To gain further insights into the molecular mechanisms involved in acute renal failure, we have isolated a new gene from rat and human, named KSP32 (kidney-specific protein with a molecular mass of 32 kDa). KSP32 encodes a novel gene that shows little homology to other mammalian proteins. It, however, shares extensive homology with several proteins found in the nematode Caenorhabditis elegans and plants. The expression of KSP32 mRNA is highly restricted to kidney. In situ hybidization analysis revealed that the expression of KSP32 mRNA was prominent in the boundary of kidney cortex and outer medulla, exhibiting a raylike formation extending from the medulla into the cortex. Finally, KSP32 mRNA was dramatically downregulated in rat following induction of acute ischemic renal failure. Rapid loss of KSP32 mRNA expression was observed beginning at ∼5 h following renal injury and mRNA levels remained depressed for at least 96 h. Both KSP32 mRNA levels as well as renal function recovered 14 days after injury. Administration of an endothelin receptor antagonist (SB-209670), known to restore renal function, significantly increased KSP32 expression.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1735-1735
Author(s):  
Jingping Xie ◽  
Scott W. Hiebert ◽  
Mark J. Koury ◽  
Stephen J. Brandt

Abstract RUNX1 (AML1 or CBFA2) regulates the expression of a number of genes important to hematopoiesis. Gene knockout studies demonstrated that a heterodimeric complex of RUNX1 and its DNA binding partner, core binding factor-beta (CBFbeta), is essential for definitive hematopoiesis. Here, we report that RUNX1 directly represses expression of the Band 3 gene prior to terminal erythroid differentiation. Band 3 is one of four major components of the erythrocyte membrane skeleton and is important for maintenance of cytoskeletal architecture and electroneutral Cl-/HCO3− exchange across the red cell membrane. Band 3 expression, like that of beta-globin, increases dramatically with terminal erythroid differentiation. In a previous study, we identified an upstream region in the mouse Band 3 gene designated as B3URE (for Band 3 upstream regulatory region) bound by multiple transcription factors, including TAL1 (also known as SCL), RUNX1, Ldb1, and GATA1, that acts as an orientation- and position-independent and tissue-specific repressive element. Chromatin immunoprecipitation (ChIP) analysis showed that RUNX1 was associated with the B3URE in intact MEL cells and electrophoretic mobility shift analysis confirmed specific RUNX1 interaction with RUNX1 binding sites in the B3URE. Together with CBFbeta, RUNX1 inhibited reporter activity from a construct linking the B3URE with 1 kb of Band 3 promoter in transiently transfected MEL but not COS cells. DNA affinity precipitation analysis with wild-type and mutant oligos established that RUNX1 and CBFbeta in MEL cell nuclear extracts could interact with the B3URE in vitro and suggested that RUNX1 recruits TAL1 and Ldb1 to DNA. Northern blot and quantitative real-time PCR analysis demonstrated that enforced expression of RUNX1 dramatically inhibited dimethylsulfoxide (DMSO)-induced Band 3 gene expression. Quantitative ChIP analysis showed that histone acetylation in the B3URE increased more than 4-fold, while histone methylation decreased ~50% after 3 days of DMSO-induced differentiation. Over the same time frame, the promoter region underwent significantly less acetylation but more extensive demethylation. Finally, changes in B3URE acetylation and methylation were attenuated and inhibited, respectively, in RUNX1-transfected MEL cells relative to vector controls. In sum, these results demonstrate that the Band 3 gene is a direct target of RUNX1 in erythroid cells and indicate that the B3URE contributes to the tightly regulated expression of this gene in differentiating erythroid progenitors. One mechanism by which RUNX1 regulates Band 3 transcription may be by influencing histone acetylation/methylation in this upstream regulatory region.


Sign in / Sign up

Export Citation Format

Share Document