scholarly journals Memory-like B cells emerging from germinal centres recycle through the subcapsular sinus

2020 ◽  
Author(s):  
Yang Zhang ◽  
Laura Garcia-Ibanez ◽  
Carolin Ulbricht ◽  
Laurence S C Lok ◽  
Thomas W Dennison ◽  
...  

Infection or vaccination leads to the development of germinal centers (GCs) where B cells evolve high affinity antigen receptors, eventually producing antibody-forming plasma cells or memory B cells. We followed the migratory pathways of B cells emerging from germinal centers (BEM) and found that many migrated into the lymph node subcapsular sinus (SCS) guided by sphingosine-1-phosphate (S1P). From there, B cells may exit the lymph node to enter distant tissues. Some BEM cells interacted with and took up antigen from SCS macrophages, followed by CCL21-guided return towards the GC. Disruption of local CCL21 gradients inhibited the recycling of BEM cells and resulted in less efficient adaption to antigenic variation. Our findings suggest that the recycling of BEM cells, that transport antigen and that contain the genetic code for B cell receptor variants, may support affinity maturation to antigenic drift.

2021 ◽  
Vol 12 ◽  
Author(s):  
Rinako Nakagawa ◽  
Dinis Pedro Calado

Germinal centers (GCs) are essential sites for the production of high-affinity antibody secreting plasma cells (PCs) and memory-B cells (MBCs), which form the framework of vaccination. Affinity maturation and permissive selection in GCs are key for the production of PCs and MBCs, respectively. For these purposes, GCs positively select “fit” cells in the light zone of the GC and instructs them for one of three known B cell fates: PCs, MBCs and persistent GC-B cells as dark zone entrants. In this review, we provide an overview of the positive selection process and discuss its mechanisms and how B cell fates are instructed.


2002 ◽  
Vol 195 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Kai-Michael Toellner ◽  
William E. Jenkinson ◽  
Dale R. Taylor ◽  
Mahmood Khan ◽  
Daniel M.-Y. Sze ◽  
...  

Exceptionally germinal center formation can be induced without T cell help by polysaccharide-based antigens, but these germinal centers involute by massive B cell apoptosis at the time centrocyte selection starts. This study investigates whether B cells in germinal centers induced by the T cell–independent antigen (4-hydroxy-3-nitrophenyl)acetyl (NP) conjugated to Ficoll undergo hypermutation in their immunoglobulin V region genes. Positive controls are provided by comparing germinal centers at the same stage of development in carrier-primed mice immunized with a T cell–dependent antigen: NP protein conjugate. False positive results from background germinal centers and false negatives from non-B cells in germinal centers were avoided by transferring B cells with a transgenic B cell receptor into congenic controls not carrying the transgene. By 4 d after immunization, hypermutation was well advanced in the T cell–dependent germinal centers. By contrast, the mutation rate for T cell–independent germinal centers was low, but significantly higher than in NP-specific B cells from nonimmunized transgenic mice. Interestingly, a similar rate of mutation was seen in extrafollicular plasma cells at this stage. It is concluded that efficient activation of hypermutation depends on interaction with T cells, but some hypermutation may be induced without such signals, even outside germinal centers.


2019 ◽  
Vol 11 (520) ◽  
pp. eaax0904 ◽  
Author(s):  
James W. Austin ◽  
Clarisa M. Buckner ◽  
Lela Kardava ◽  
Wei Wang ◽  
Xiaozhen Zhang ◽  
...  

Nearly all chronic human infections are associated with alterations in the memory B cell (MBC) compartment, including a large expansion of CD19hiT-bethi MBC in the peripheral blood of HIV-infected individuals with chronic viremia. Despite their prevalence, it is unclear how these B cells arise and whether they contribute to the inefficiency of antibody-mediated immunity in chronic infectious diseases. We addressed these questions by characterizing T-bet–expressing B cells in lymph nodes (LN) and identifying a strong T-bet signature among HIV-specific MBC associated with poor immunologic outcome. Confocal microscopy and quantitative imaging revealed that T-bethi B cells in LN of HIV-infected chronically viremic individuals distinctly accumulated outside germinal centers (GC), which are critical for optimal antibody responses. In single-cell analyses, LN T-bethi B cells of HIV-infected individuals were almost exclusively found among CD19hi MBC and expressed reduced GC-homing receptors. Furthermore, HIV-specific B cells of infected individuals were enriched among LN CD19hiT-bethi MBC and displayed a distinct transcriptome, with features similar to CD19hiT-bethi MBC in blood and LN GC B cells (GCBC). LN CD19hiT-bethi MBC were also related to GCBC by B cell receptor (BCR)–based phylogenetic linkage but had lower BCR mutation frequencies and reduced HIV-neutralizing capacity, consistent with diminished participation in GC-mediated affinity selection. Thus, in the setting of chronic immune activation associated with HIV viremia, failure of HIV-specific B cells to enter or remain in GC may help explain the rarity of high-affinity protective antibodies.


2018 ◽  
Vol 215 (4) ◽  
pp. 1227-1243 ◽  
Author(s):  
Yang Zhang ◽  
Laura Tech ◽  
Laura A. George ◽  
Andreas Acs ◽  
Russell E. Durrett ◽  
...  

Germinal centers (GCs) are the sites where B cells undergo affinity maturation. The regulation of cellular output from the GC is not well understood. Here, we show that from the earliest stages of the GC response, plasmablasts emerge at the GC–T zone interface (GTI). We define two main factors that regulate this process: Tfh-derived IL-21, which supports production of plasmablasts from the GC, and TNFSF13 (APRIL), which is produced by a population of podoplanin+ CD157high fibroblastic reticular cells located in the GTI that are also rich in message for IL-6 and chemokines CXCL12, CCL19, and CCL21. Plasmablasts in the GTI express the APRIL receptor TNFRSF13B (TACI), and blocking TACI interactions specifically reduces the numbers of plasmablasts appearing in the GTI. Plasma cells generated in the GTI may provide an early source of affinity-matured antibodies that may neutralize pathogens or provide feedback regulating GC B cell selection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Han Sun ◽  
Hu-Qin Yang ◽  
Kan Zhai ◽  
Zhao-Hui Tong

B cells play vital roles in host defense against Pneumocystis infection. However, the features of the B cell receptor (BCR) repertoire in disease progression remain unclear. Here, we integrated single-cell RNA sequencing and single-cell BCR sequencing of immune cells from mouse lungs in an uninfected state and 1–4 weeks post-infection in order to illustrate the dynamic nature of B cell responses during Pneumocystis infection. We identified continuously increased plasma cells and an elevated ratio of (IgA + IgG) to (IgD + IgM) after infection. Moreover, Pneumocystis infection was associated with an increasing naïve B subset characterized by elevated expression of the transcription factor ATF3. The proportion of clonal expanded cells progressively increased, while BCR diversity decreased. Plasma cells exhibited higher levels of somatic hypermutation than naïve B cells. Biased usage of V(D)J genes was observed, and the usage frequency of IGHV9-3 rose. Overall, these results present a detailed atlas of B cell transcriptional changes and BCR repertoire features in the context of Pneumocystis infection, which provides valuable information for finding diagnostic biomarkers and developing potential immunotherapeutic targets.


2020 ◽  
Vol 32 (6) ◽  
pp. 385-395
Author(s):  
Tadahiro Kodama ◽  
Mika Hasegawa ◽  
Yui Sakamoto ◽  
Kei Haniuda ◽  
Daisuke Kitamura

Abstract Upon antigen stimulation, IgG+ B cells rapidly proliferate and differentiate into plasma cells, which has been attributed to the characteristics of membrane-bound IgG (mIgG), but the underlying molecular mechanisms remain elusive. We have found that a part of mouse mIgG1 is ubiquitinated through the two responsible lysine residues (K378 and K386) in its cytoplasmic tail and this ubiquitination is augmented upon antigen stimulation. The ubiquitination of mIgG1 involves its immunoglobulin tail tyrosine (ITT) motif, Syk/Src-family kinases and Cbl proteins. Analysis of a ubiquitination-defective mutant of mIgG1 revealed that ubiquitination of mIgG1 facilitates its ligand-induced endocytosis and intracellular trafficking from early endosome to late endosome, and also prohibits the recycling pathway, thus attenuating the surface expression level of mIgG1. Accordingly, ligation-induced activation of B-cell receptor (BCR) signalling molecules is attenuated by the mIgG1 ubiquitination, except MAP kinase p38 whose activation is up-regulated due to the ubiquitination-mediated prohibition of mIgG1 recycling. Adaptive transfer experiments demonstrated that ubiquitination of mIgG1 facilitates expansion of germinal centre B cells. These results indicate that mIgG1-mediated signalling and cell activation is regulated by ubiquitination of mIgG1, and such regulation may play a role in expansion of germinal centre B cells.


Science ◽  
2013 ◽  
Vol 341 (6146) ◽  
pp. 673-677 ◽  
Author(s):  
Ziv Shulman ◽  
Alexander D. Gitlin ◽  
Sasha Targ ◽  
Mila Jankovic ◽  
Giulia Pasqual ◽  
...  

T follicular helper (TFH) cells are a specialized subset of effector T cells that provide help to and thereby select high-affinity B cells in germinal centers (GCs). To examine the dynamic behavior of TFH cells in GCs in mice, we used two-photon microscopy in combination with a photoactivatable fluorescent reporter. Unlike GC B cells, which are clonally restricted, TFH cells distributed among all GCs in lymph nodes and continually emigrated into the follicle and neighboring GCs. Moreover, newly activated TFH cells invaded preexisting GCs, where they contributed to B cell selection and plasmablast differentiation. Our data suggest that the dynamic exchange of TFH cells between GCs ensures maximal diversification of T cell help and that their ability to enter ongoing GCs accommodates antigenic variation during the immune response.


2010 ◽  
Vol 207 (2) ◽  
pp. 353-363 ◽  
Author(s):  
Michelle A. Linterman ◽  
Laura Beaton ◽  
Di Yu ◽  
Roybel R. Ramiscal ◽  
Monika Srivastava ◽  
...  

During T cell–dependent responses, B cells can either differentiate extrafollicularly into short-lived plasma cells or enter follicles to form germinal centers (GCs). Interactions with T follicular helper (Tfh) cells are required for GC formation and for selection of somatically mutated GC B cells. Interleukin (IL)-21 has been reported to play a role in Tfh cell formation and in B cell growth, survival, and isotype switching. To date, it is unclear whether the effect of IL-21 on GC formation is predominantly a consequence of this cytokine acting directly on the Tfh cells or if IL-21 directly influences GC B cells. We show that IL-21 acts in a B cell–intrinsic fashion to control GC B cell formation. Mixed bone marrow chimeras identified a significant B cell–autonomous effect of IL-21 receptor (R) signaling throughout all stages of the GC response. IL-21 deficiency profoundly impaired affinity maturation and reduced the proportion of IgG1+ GC B cells but did not affect formation of early memory B cells. IL-21R was required on GC B cells for maximal expression of Bcl-6. In contrast to the requirement for IL-21 in the follicular response to sheep red blood cells, a purely extrafollicular antibody response to Salmonella dominated by IgG2a was intact in the absence of IL-21.


2008 ◽  
Vol 15 (10) ◽  
pp. 1598-1605 ◽  
Author(s):  
Thomas A. Luijkx ◽  
Jacqueline A. M. van Gaans-van den Brink ◽  
Harry H. van Dijken ◽  
Germie P. J. M. van den Dobbelsteen ◽  
Cécile A. C. M. van Els

ABSTRACT Highly homologous meningococcal porin A (PorA) proteins induce protective humoral immunity against Neisseria meningitidis group B infection but with large and consistent differences in the levels of serum bactericidal activity achieved. We investigated whether a poor PorA-specific serological outcome is associated with a limited size of the specific B-cell subpopulation involved. The numbers of PorA-specific splenic plasma cells, bone marrow (BM) plasma cells, and splenic memory B cells were compared between mice that received priming and boosting with the weakly immunogenic PorA (P1.7-2,4) protein and those that received priming and boosting with the highly immunogenic PorA (P1.5-1,2-2) protein. Immunoglobulin G (IgG) titers (except at day 42), bactericidal activity, and the avidity of IgG produced against P1.7-2,4 were significantly lower at all time points after priming and boosting than against P1.5-1,2-2. These differences, however, were not associated with a lack of P1.7-2,4-specific plasma cells. Instead, priming with both of the PorAs resulted in the initial expansion of comparable numbers of splenic and BM plasma cells. Moreover, P1.7-2,4-specific BM plasma cells, but not P1.5-1,2-2-specific plasma cells, expanded significantly further after boosting. Likewise, after a relative delay during the priming phase, the splenic P1.7-2,4-specific memory B cells largely outnumbered those specific for P1.5-1,2-2, upon boosting. These trends were observed with different vaccine formulations of the porins. Our results show for the first time that B-cell subpopulations involved in a successfully maturated antibody response against a clinically relevant vaccine antigen are maintained at smaller population sizes than those associated with poor affinity maturation. This bears consequences for the interpretation of immunological memory data in clinical vaccine trials.


1996 ◽  
Vol 184 (5) ◽  
pp. 1927-1937 ◽  
Author(s):  
L Martínez-Pomares ◽  
M Kosco-Vilbois ◽  
E Darley ◽  
P Tree ◽  
S Herren ◽  
...  

Ligands for the cysteine-rich (CR) domain of the mannose receptor (MR) were detected by incubating murine tissues with a chimeric protein containing CR fused to the Fc region of human IgG1 (CR-Fc). In naive mice, CR-Fc bound to sialoadhesin+, F4/80low/-, macrosialin+ macrophages (M phi) in spleen marginal zone (metallophilic M phi) and lymph node subcapsular sinus. Labeling was also observed in B cell areas of splenic white pulp. Western blotting analysis of spleen and lymph nodes lysates revealed a restricted number of molecules that interacted specifically with CR-Fc. In immunized mice, labeling was upregulated on germinal centers in splenic white pulp and follicular areas of lymph nodes. Kinetic analysis of the pattern of CR-Fc labeling in lymph nodes during a secondary immune response to ovalbumin showed that CR ligand expression migrated towards B cell areas, associated with cells displaying distinctive dendritic morphology, and accumulated in developing germinal centers. These studies suggest that MR+ cells or MR-carbohydrate-containing antigen complexes could be directed towards areas where humoral immune responses take place, through the interaction of the MR CR domain with molecules expressed in specialized macrophage populations and antigen transporting cells.


Sign in / Sign up

Export Citation Format

Share Document