scholarly journals Maternal vitamin D deficiency impairs heart formation in mouse offspring through a change in 3D-chromatin structure

2020 ◽  
Author(s):  
Eva M. Seipelt ◽  
Paul Bensadoun ◽  
Satish Sati ◽  
Charlène Couturier ◽  
Julien Astier ◽  
...  

AbstractThe origins of congenital heart diseases, the most common congenital diseases are still largely unknown. Environmental factors are now emerging as major causes of these diseases. Vitamin D deficiency has become a public health burden, notably for childbearing age, pregnant and breastfeeding women. Since maternal 25-hydroxyvitamin D (25(OH)D) determined fetal and neonatal 25(OH)D status, foetuses exposed to insufficient levels of vitamin D, may feature developmental defects.Herein, we investigated the effects of maternal vitamin D deficiency on cardiovascular defects in early and later life of offsprings in two generations as well as the molecular mechanisms underlying vitamin D effect.Eight weeks before and during pregnancy, C57BL/6JRj female mice received a sufficient or vitamin D deficient diet ((1.0 IU/g in control vs 0.0 IU/g in Vitamin D Deficient (VDD) group). E16.5 Embryos of maternal VDD diet featured hypertrophic heart revealed by a thicker left ventricular (LV) wall and septum. RNAseq analysis of LV revealed 1555 transcripts differentially expressed in the VDD group and among them cardiac transcription factors and constitutive cardiac genes (tbx5, gata4, myl2). Anti-Vitamin D receptor (VDR) Chip-seq from chromatin of E16.5 LV uncovered different targeting of tbx5 and tbx3 loci by VDR in the VDD vs control embryos. Anti-CTCF ChIP-loop experiments focusing on the Tbx3 and Tbx5 loci uncovered a change in the Topology Associated Domains associated with these loci.Echocardiography of 2-months-old VDD offspring revealed a significantly thicker left ventricle and increased fractional shortening while 6-months-old mice featured cardiac decompensation and in turn failing LV.Maternal vitamin D deficiency severely affects heart formation following a change in chromatin conformation on cardiac gene loci and impacts function of adult hearts in two generations. These defects are likely to be at the origin of cardiovascular diseases in the adulthood.

2021 ◽  
Vol 22 (10) ◽  
pp. 5145
Author(s):  
Giuseppe Schepisi ◽  
Caterina Gianni ◽  
Sara Bleve ◽  
Silvia De Padova ◽  
Cecilia Menna ◽  
...  

Testicular cancer (TC) is the most frequent tumor in young males. In the vast majority of cases, it is a curable disease; therefore, very often patients experience a long survival, also due to their young age at diagnosis. In the last decades, the role of the vitamin D deficiency related to orchiectomy has become an increasingly debated topic. Indeed, vitamin D is essential in bone metabolism and many other metabolic pathways, so its deficiency could lead to various metabolic disorders especially in long-term TC survivors. In our article, we report data from studies that evaluated the incidence of hypovitaminosis D in TC survivors compared with cohorts of healthy peers and we discuss molecular mechanisms and clinical implications.


2002 ◽  
Vol 7 (7) ◽  
pp. 455-458 ◽  
Author(s):  
A Micheil Innes ◽  
Molly M Seshia ◽  
Chitra Prasad ◽  
Saif Al Saif ◽  
Frank R Friesen ◽  
...  

2019 ◽  
Vol 56 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Meita Dhamayanti ◽  
Anindita Noviandhari ◽  
Stephani Supriadi ◽  
Raden TD Judistiani ◽  
Budi Setiabudiawan

2018 ◽  
Vol 27 (03) ◽  
pp. 129-134 ◽  
Author(s):  
B. M. Holzapfel ◽  
F. Jakob ◽  
A. A. Kurth ◽  
G. Maier ◽  
K. Horas

SummaryVitamin D deficiency is a global health problem of enormous and increasing dimensions. In the past decades, numerous studies have centered on the role of vitamin D in the pathogenesis and course of many diseases including several types of cancer. Indeed, vitamin D has been widely acknowledged to be involved in the regulation of cell proliferation, differentiation and apoptosis in numerous cancer cells. While the full range of molecular mechanisms involveld in cancer cell growth and progression remains to be elucidated, recent research has deepened our understanding of the processes that may be affected by vitamin D or vitamin D deficiency.In this review, we consider the properties of bone that enable cancer cells to grow and thrive within the skeleton, and the role of vitamin D and the vitamin D receptor in the process of primary and secondary cancer growth in bone.


Sign in / Sign up

Export Citation Format

Share Document