scholarly journals Identification of molecular candidates which regulate calcium-dependent CD8+ T-cell cytotoxicity

2020 ◽  
Author(s):  
Sylvia Zöphel ◽  
Gertrud Schwär ◽  
Maryam Nazarieh ◽  
Verena Konetzki ◽  
Cora Hoxha ◽  
...  

AbstractCytotoxic CD8+ T lymphocytes (CTL) eliminate infected cells or transformed tumour cells by releasing perforin-containing cytotoxic granules at the immunological synapse. The secretion of such granules depends on Ca2+-influx through store operated Ca2+ channels, formed by STIM-activated Orai proteins. Whereas molecular mechanisms of the secretion machinery are well understood, much less is known about the molecular machinery that regulates the efficiency of Ca2+-dependent target cell killing. Here, we isolated total RNA from natural killer (NK) cells, non-stimulated CD8+ T-cells, and from Staphylococcus aureus enterotoxin A (SEA) stimulated CD8+ T-cells (SEA-CTL) and conducted whole genome expression profiling by microarray experiments. Based on differential expression analysis of the transcriptome data and analysis of master regulator genes, we identified 31 candidates which potentially regulate Ca2+-homeostasis in CTL. To investigate a putative function of these candidates in CTL cytotoxicity, we transfected either SEA-stimulated CTL (SEA-CTL) or antigen specific CD8+ T-cell clones (CTL-MART-1) with siRNAs specific against the identified candidates and analyzed the killing capacity using a real-time killing assay. In addition, we complemented the analysis by studying the effect of inhibitory substances acting on the candidate proteins if available. Finally, to unmask their involvement in Ca2+ dependent cytotoxicity, candidates were also analyzed under Ca2+-limiting conditions. Overall, this strategy led to the identification of KCNN4, RCAN3, CCR5 and BCL2 as potential candidates to regulate the efficiency of Ca2+-dependent target cell killing.

2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Jie Yang ◽  
Alan Pemberton ◽  
W. Ivan Morrison ◽  
Tim Connelley

ABSTRACTThere is established evidence that cytotoxic CD8+T cells are important mediators of immunity against the bovine intracellular protozoan parasiteTheileria parva. However, the mechanism by which the specific CD8+T cells kill parasitized cells is not understood. Although the predominant pathway used by human and murine CD8+T cells to kill pathogen-infected cells is granule exocytosis, involving the release of perforin and granzyme B, there is to date a lack of published information on the biological activities of bovine granzyme B. The present study set out to define the functional activities of bovine granzyme B and determine its role in mediating the killing ofT. parva-parasitized cells. DNA constructs encoding functional and nonfunctional forms of bovine granzyme B were produced, and the proteins expressed in Cos-7 cells were used to establish an enzymatic assay to detect and quantify the expression of functional granzyme B protein. Using this assay, the levels of killing of differentT. parva-specific CD8+T cell clones were found to be significantly correlated with the levels of granzyme B protein but not the levels of mRNA transcript expression. Experiments using inhibitors specific for perforin and granzyme B confirmed that CD8+T cell killing of parasitized cells is dependent on granule exocytosis and, specifically, granzyme B. Further studies showed that the granzyme B-mediated death of parasitized cells is independent of caspases and that granzyme B activates the proapoptotic molecule Bid.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1583-1583
Author(s):  
Melissa Vrohlings ◽  
Jan Müller ◽  
Stephanie Jungmichel ◽  
David Senn ◽  
Anna Bianca Howald ◽  
...  

Abstract BCMAxCD3 targeting therapies have demonstrated anti-myeloma activity, and high minimal residual disease negativity rates can be achieved with this approach in heavily pre-treated patients with relapsed or refractory multiple myeloma (RRMM). Despite these promising clinical results, patients eventually develop resistant disease and relapse. Thus, there is a high need for novel BCMA therapies that can evade the resistance mechanisms and provide more durable responses. Recently, we reported on the promising activity of the Local Activator and T cell Engager (LocATE) technology, a trispecific molecule that targets CD3, BCMA and PD-L1, redirecting T cells to multiple myeloma (MM) cells while selectively counteracting PD-L1/PD-1 induced immunosuppression at the immune synapse (ASH, 2020). Here we present CDR101, an optimized LocATE candidate with potential for clinical development. First, we analyzed the ability of CDR101 to induce PBMC-mediated cytotoxicity in two MM cell-lines expressing BCMA (U-266 and NCI-H929) and compared it to four BCMAxCD3 bispecific formats currently in clinical development (a half-life extended BCMAxCD3 BiTE, a BCMA-TCB, and two different BCMAxCD3 bispecific monoclonal antibodies) alone or in combination with a separate PD-L1 blocking antibody. CDR101 resulted in at least 10-fold increased T cell-mediated target cell lysis compared to control BCMAxCD3 bispecifics. Strikingly, CDR101 also resulted in increased MM cell killing when compared to free, independent combinations of BCMAxCD3 bispecifics and the PD-L1 inhibitor. These results, together with the observation that MM cells upregulate the expression of PD-L1 in response to treatment with BCMAxCD3 bispecifics, suggest that the superior effect of CDR101 could be attributed to preferential and highly selective inhibition of the PD-1/PD-L1 axis at the cellular interaction within the immune synapse. Next, bone marrow aspirates from newly diagnosed and RRMM patients were treated with increasing concentrations of CDR101 or a BCMAxCD3 bispecific control. After 24h of incubation, percentage of viable CD138-positive cells and activation status of autologous T cells were analyzed by FACS. Overall, CDR101 potently induced lysis of primary MM cells independently of the E:T ratio (range of E:T ratio between 1.3:1 and 33:1). CDR101 achieved higher target cell killing in all samples compared to the bispecific control, with at least 2-fold difference in 3 out of 4 samples at the highest concentration tested. Concomitantly, CDR101 induced a dose-dependent increase of the T cell activation marker CD25, corroborating the ability of CDR101 to counteract PD-L1/PD-1 induced immunosuppression. In vivo anti-tumor activity of CDR101 was evaluated using a human MM (NCI-H929) xenograft model in NPG mice. Treatment with four different doses of CDR101 or BCMAxCD3 bispecific control demonstrated that CDR101 induced stronger and more durable responses compared to the bispecific control leading to complete tumor regression in 55 out of 60 mice at the last day of treatment (day 29) with no relapse until the end of the observation time (day 41). Collectively, CDR101 demonstrated that targeting BCMA with simultaneous blockade of PD-L1 leads to improved myeloma cell killing compared to clinically validated therapies. In contrast to high-affinity PD-L1 immune checkpoint inhibitors, CDR101 selectively inhibits PD-L1 at the immune synapse preventing on-target off-tumor effects. This is expected to translate into a decreased incidence of immune related adverse events (irAEs) and better efficacy arguing for a high clinical potential and swift translation into the clinic. Disclosures Vrohlings: CDR-Life Inc: Current Employment, Current holder of stock options in a privately-held company. Jungmichel: CDR-Life Inc: Current Employment, Current holder of stock options in a privately-held company. Senn: CDR-Life Inc: Current Employment, Current holder of stock options in a privately-held company. Howald: CDR-Life Inc: Current Employment, Current holder of stock options in a privately-held company. Schleier: CDR-Life Inc: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Scheifele: CDR-Life Inc: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Wendelspiess: CDR-Life Inc: Current Employment, Current holder of stock options in a privately-held company. Richle: CDR-Life Inc: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Merten: CDR-Life Inc: Current Employment, Current holder of stock options in a privately-held company. Lenherr-Frey: CDR-Life Inc: Current Employment, Current holder of stock options in a privately-held company. Leisner: CDR-Life Inc: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Manz: CDR-Life Inc: Consultancy, Current holder of stock options in a privately-held company; University of Zurich: Patents & Royalties: CD117xCD3 TEA. Borras: CDR-Life Inc: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 399
Author(s):  
Aerin Yoon ◽  
Shinai Lee ◽  
Sua Lee ◽  
Sojung Lim ◽  
Yong-Yea Park ◽  
...  

As mesothelin is overexpressed in various types of cancer, it is an attractive target for therapeutic antibodies. T-cell bispecific antibodies bind to target cells and engage T cells via binding to CD3, resulting in target cell killing by T-cell activation. However, the affinity of the CD3-binding arm may influence CD3-mediated plasma clearance or antibody trapping in T-cell-containing tissues. This may then affect the biodistribution of bispecific antibodies. In this study, we used scFab and knob-into-hole technologies to construct novel IgG-based 1 + 1 MG1122-A and 2 + 1 MG1122-B bispecific antibodies against mesothelin and CD3ε. MG1122-B was designed to be bivalent to mesothelin and monovalent to CD3ε, using a 2 + 1 head-to-tail format. Activities of the two antibodies were evaluated in mesothelin-positive tumor cells in vitro and xenograft models in vivo. Although both antibodies exhibited target cell killing efficacy and produced regression of xenograft tumors with CD8+ T-cell infiltration, the antitumor efficacy of MG1122-B was significantly higher. MG1122-B may improve tumor targeting because of its bivalency for tumor antigen. It may also reduce systemic toxicity by limiting the activation of circulating T cells. Thus, MG1122-B may be useful for treating mesothelin-positive solid tumors.


2020 ◽  
Author(s):  
Craig M. Rive ◽  
Eric Yung ◽  
Christopher S. Hughes ◽  
Scott D. Brown ◽  
Govinda Sharma ◽  
...  

AbstractKRAS codon 12 mutations are among the most common hotspot mutations in human cancer. Using a functional screening platform we set out to identify αβ T-cell receptors (TCRs) as potential targeting reagents for KRASG12D and/or KRASG12V neoepitopes presented by the prevalent HLA-A*02:01 allele. Here we describe isolation and characterization of three distinct CD8+ T cell clones from a pre-treated 76 year old patient with pancreatic ductal adenocarcinoma (PDAC). One clone was KRASG12V reactive and two clones were KRASG12D reactive. Tetramer staining showed high specificity of each T cell clone for its cognate HLA-A*02:01 restricted KRASG12V or KRASG12D neoepitope (>98% tetramer positive) without appreciable cross-reactivity to wild-type KRAS (<2% tetramer positive). We amplified and sequenced the full-length TCR alpha and beta chains from each of the three T cell clones and determined that these three TCRs comprised distinct combinations of two different TCR alpha chains and two distinct TCR beta chains. We resynthesized these TCR alpha and beta chain nucleotide sequences and reconstituted the original pairs in healthy donor CD8+ T cells by lentiviral transduction, substituting the human αβ TCR constant gene segments with murine αβ TCR constant gene segments to prevent mispairing with endogenous TCR subunits. Tetramer analysis and IFN-γ ELISpot analysis confirmed the specificity of each reconstituted TCR for its cognate HLA-A*02:01 restricted KRAS neoepitope. To test cytolytic activity TCR-transduced healthy donor CD8+ T cells were co-cultured with KRASG12V, KRASG12D or KRASwt peptide-pulsed K562-HLA-A*02:01 antigen presenting cells at an effector to target cell ratio of 4:1. Under these conditions we observed neoepitope-specific killing of 16.5% to 19.0% of target cell populations. To assess in vivo activity we developed a KRASG12V/A*02:01 patient-derived xenograft (PDX) mouse model. Over a 56-day period, PDX bearing mice infused with human TCR-transduced T cells had significantly reduced tumor growth and longer survival compared to mice infused with non-transduced control T cells. In conjunction with other therapeutic approaches, immune effector cell therapies expressing these TCRs may improve outcomes for HLA-A*02:01 patients with KRASG12V and/or KRASG12D positive tumors.


2016 ◽  
Vol 7 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Danielle R.J. Verboogen ◽  
Ilse Dingjan ◽  
Natalia H. Revelo ◽  
Linda J. Visser ◽  
Martin ter Beest ◽  
...  

AbstractImmune responses are initiated by the interactions between antigen-presenting cells (APCs), such as dendritic cells (DCs), with responder cells, such as T cells, via a tight cellular contact interface called the immunological synapse. The immunological synapse is a highly organized subcellular structure that provides a platform for the presentation of antigen in major histocompatibility class I and II complexes (MHC class I and II) on the surface of the APC to receptors on the surface of the responder cells. In T cells, these contacts lead to highly polarized membrane trafficking that results in the local release of lytic granules and in the delivery and recycling of T cell receptors at the immunological synapse. Localized trafficking also occurs at the APC side of the immunological synapse, especially in DCs where antigen loaded in MHC class I and II is presented and cytokines are released specifically at the synapse. Whereas the molecular mechanisms underlying polarized membrane trafficking at the T cell side of the immunological synapse are increasingly well understood, these are still very unclear at the APC side. In this review, we discuss the organization of the APC side of the immunological synapse. We focus on the directional trafficking and release of membrane vesicles carrying MHC molecules and cytokines at the immunological synapses of DCs. We hypothesize that the specific delivery of MHC and the release of cytokines at the immunological synapse mechanistically resemble that of lytic granule release from T cells.


2012 ◽  
Vol 443 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Tim Y. Hou ◽  
Jennifer M. Monk ◽  
Yang-Yi Fan ◽  
Rola Barhoumi ◽  
Yong Q. Chen ◽  
...  

n−3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n−3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n−3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott–Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n−3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A102-A102
Author(s):  
Yelena Bronevetsky

BackgroundThe key challenges to developing T cell-based therapies center on the fact that T cell-mediated tumor death relies on complicated cell-cell interactions and several complex mechanisms. These therapies have also been associated with significant side effects related to cytokine release syndrome (CRS) and neurotoxicity, placing importance on understanding T cell anti-tumor functions like cytokine release and killing kinetics. Ideally, T cell therapies would be tailored to mediate the rapid destruction of multiple tumor cells while reducing these side effects.MethodsThe Berkeley Lights Opto™ Cell Therapy Development Workflow is a collection of software capabilities, reagents, and protocols that allow scientists to selectively measure cytokine secretion, visualize killing behavior, and sequence TCRs from individual cells in parallel. Here, we demonstrate its use for CAR-T cell phenotypic and functional screening as well as the discovery of TCRs associated with specific T cell behaviors.ResultsThe cumulative percentage of pens with tumor cell caspase-3 activity increased over time in pens loaded with CD19+ tumors, peaking at 50% tumor cell death after 16 hours of incubation. This is in contrast to only 10% of pens displaying tumor cell death in control pens loaded with CD19- tumor cells; control pens also exhibited slower killing kinetics. The single-cell resolution of the OptoSelect™ microfluidic chip enabled us to analyze each significant T cell-tumor cell interaction. We were able to directly compare differences in killing kinetics of individual T cells and link this tumor killing behavior to IFNγ secretion. We identified fast-killing and slow-killing CAR-T cells in a single-day experiment, which could then be exported for genomic analysis. We highlight an example where TCR alpha and beta sequences are recovered from single T cells after export.ConclusionsThe Opto™ Cell Therapy Development Workflow on Berkeley Lights systems enables researchers to correlate cytokine secretion to target cell killing behavior in CAR-mediated antigen recognition, discriminate CAR-T cell subsets based on kinetics of target cell killing, and link cytokine secretion and target cell killing behavior to TCR sequence in TCR-mediated antigen recognition.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A690-A690
Author(s):  
Gabrielle Leclercq ◽  
Helene Haegel ◽  
Anneliese Schneider ◽  
Estelle Marrer Berger ◽  
Antje Walz ◽  
...  

BackgroundT cell bispecific antibodies (TCBs) are extremely potent T cell engagers, harboring a 2+1 format with one binder to the CD3ε chain and two binders to specific tumor antigens. Crosslinking of CD3 with tumor antigens triggers T cell activation, proliferation and cytokine release, leading to tumor cell killing.1 2 TCB treatment is sometimes associated with safety liabilities due to on-target on-tumor, on-target off-tumor cytotoxic activity and cytokine release. Patients treated with TCBs may experience a Cytokine Release Syndrome (CRS), characterized by fever, hypotension and respiratory deficiency and associated with the release of pro-inflammatory cytokines such as IL-6, TNF-α, IFN-γ, and IL-1β.3 Off-tumor toxicity may occur if target antigens are expressed in healthy cells, which may potentially result in tissue damages and compromise the patient‘s safety. Rapid pharmacological blockade of T cell activation and proliferation is a promising approach to mitigate these life-threatening toxicities. Tyrosine kinases such as SRC, LCK or ZAP70 are involved in downstream signaling pathways after engagement of the T cell receptor and blocking these kinases might serve to abrogate T cell activation when required. Dasatinib was identified as a potent candidate that switches off CAR T cell functionality.4 5MethodsUsing an in vitro model of target cell killing by human peripheral blood mononuclear cells, we assessed the reversible effects of dasatinib combined with CEA-TCB or HLA-A2-WT1-TCB on T cell activation and proliferation, target cell killing and cytokine release. At assay endpoints, T cell phenotype and target cell killing were measured by flow cytometry and supernatants were analyzed by Luminex to assess cytokine release. To determine the effective dose of dasatinib, the Incucyte system was used to follow kinetics of target cells killing by TCB in the presence of a dose response of dasatinib concentrations.Results100 nM dasatinib prevented TCB-mediated target cell killing when added in the system upon restimulation of activated T cells (figure 1). Dasatinib concentrations above 50 nM fully switched off target cell killing (figure 2) which was restored upon removal of dasatinib. These data confirm that dasatinib act as a potent and reversible on/off switch for activated T cells at pharmacologically relevant doses as they are applied in patients according to the label.6ConclusionsTaken together, we provide evidence for the use of dasatinib as a pharmacological on/off switch to mitigate off-tumor toxicities or CRS by T cell engaging therapies. These data are being validated in vivo.ReferencesBacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, et al. A novel carcinoembryonic antigen T-Cell Bispecific Antibody [CEA TCB] for the treatment of solid tumors. Clin Cancer Res 2016;22(13):3286–97.Bacac M, Klein C, Umana P. CEA TCB: A novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors. Oncoimmunology 2016;5(8):e1203498.Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, et al. Cytokine release syndrome. J Immunother Cancer 2018;6(1):56.Weber EW, Lynn RC, Sotillo E, Lattin J, Xu P, Mackall CL. Pharmacologic control of CAR-T cell function using dasatinib. Blood Advances 2019;3(5):711–7.Mestermann K, Giavridis T, Weber J, Rydzek J, Frenz S, Nerreter T, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Science Translational Medicine 2019;11(499):eaau5907.Wang X, Roy A, Hochhaus A, Kantarjian HM, Chen TT, Shah NP. Differential effects of dosing regimen on the safety and efficacy of dasatinib: retrospective exposure-response analysis of a Phase III study. Clinical pharmacology : advances and applications 2013;5:85–97.Abstract 653 Figure 1Representative flow cytometry experiment reporting SKM-1 target cell viability upon first stimulation with 10 nM HLA-A2 WT-1-TCB in the absence of dasatinib (left pannel) and upon second stimulation with 10 nM HLA-A2 WT-1-TCB in the presence of 100 nM dasatinib (right pannel)Abstract 653 Figure 2Real time killing (Incucyte) of red fluorescent A375 cells loaded with RMF peptides by 10 nM HLA-A2 WT-1-TCB (left pannel) and of red fluorescent MKN45 cells by 1 nM CEA-TCB (right pannel) in the presence of different dasatinib concentrations ranging from 100 nM to 0 nM. Mean of technical duplicates + SEM


Sign in / Sign up

Export Citation Format

Share Document