scholarly journals Granzyme B Is an Essential Mediator in CD8+T Cell Killing ofTheileria parva-Infected Cells

2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Jie Yang ◽  
Alan Pemberton ◽  
W. Ivan Morrison ◽  
Tim Connelley

ABSTRACTThere is established evidence that cytotoxic CD8+T cells are important mediators of immunity against the bovine intracellular protozoan parasiteTheileria parva. However, the mechanism by which the specific CD8+T cells kill parasitized cells is not understood. Although the predominant pathway used by human and murine CD8+T cells to kill pathogen-infected cells is granule exocytosis, involving the release of perforin and granzyme B, there is to date a lack of published information on the biological activities of bovine granzyme B. The present study set out to define the functional activities of bovine granzyme B and determine its role in mediating the killing ofT. parva-parasitized cells. DNA constructs encoding functional and nonfunctional forms of bovine granzyme B were produced, and the proteins expressed in Cos-7 cells were used to establish an enzymatic assay to detect and quantify the expression of functional granzyme B protein. Using this assay, the levels of killing of differentT. parva-specific CD8+T cell clones were found to be significantly correlated with the levels of granzyme B protein but not the levels of mRNA transcript expression. Experiments using inhibitors specific for perforin and granzyme B confirmed that CD8+T cell killing of parasitized cells is dependent on granule exocytosis and, specifically, granzyme B. Further studies showed that the granzyme B-mediated death of parasitized cells is independent of caspases and that granzyme B activates the proapoptotic molecule Bid.

2018 ◽  
Author(s):  
Jie Yang ◽  
Alan Pemberton ◽  
W. Ivan Morrison ◽  
Tim Connelley

AbstractThere is established evidence that cytotoxic CD8+ T cells are important mediators of immunity against the bovine intracellular protozoan parasiteT. parva.However, the mechanism by which the specific CD8+ T cells kill parasitized cells is not understood. Although the predominant pathway used by human and murine CD8+ T cells to kill pathogen-infected cells is granule exocytosis, involving release of perforin and granzyme B, there is to date a lack of published information on the biological activities of bovine granzyme B. The present study set out to define the functional activities of bovine granzyme B and determine its role in mediating killing ofT. parva-parasitized cells. DNA constructs encoding functional and non-functional forms of bovine granzyme B were produced and the proteins expressed in Cos-7 cells were used to establish an enzymatic assay to detect and quantify expression of functional granzyme B protein. Using this assay, the levels of killing of differentT. parva-specific CD8+ T cell clones were found to be significantly correlated with levels of granzyme B protein, but not mRNA transcript, expression. Experiments using inhibitors specific for perforin and granzyme B confirmed that CD8+ T cell killing of parasitized cells is dependent on granule exocytosis and specifically granzyme B. Further studies showed that granzyme B-mediated death of parasitized cells is independent of caspases, but involves activation of the pro-apoptotic molecule Bid.


2005 ◽  
Vol 201 (10) ◽  
pp. 1567-1578 ◽  
Author(s):  
Franck Halary ◽  
Vincent Pitard ◽  
Dorota Dlubek ◽  
Roman Krzysiek ◽  
Henri de la Salle ◽  
...  

Long-lasting expansion of Vδ2neg γδ T cells is a hallmark of cytomegalovirus (CMV) infection in kidney transplant recipients. The ligands of these cells and their role remain elusive. To better understand their immune function, we generated γδ T cell clones from several transplanted patients. Numerous patient Vδ1+, Vδ3+, and Vδ5+ γδ T cell clones expressing diverse Vγ chains, but not control Vγ9Vδ2+ T clones, displayed strong reactivity against CMV-infected cells, as shown by their production of tumor necrosis factor-α. Vδ2neg γδ T lymphocytes could also kill CMV-infected targets and limit CMV propagation in vitro. Their anti-CMV reactivity was specific for this virus among herpesviridae and required T cell receptor engagement, but did not involve major histocompatibility complex class I molecules or NKG2D. Vδ2neg γδ T lymphocytes expressed receptors essential for intestinal homing and were strongly activated by intestinal tumor, but not normal, epithelial cell lines. High frequencies of CMV- and tumor-specific Vδ2neg γδ T lymphocytes were found among patients' γδ T cells. In conclusion, Vδ2neg γδ T cells may play a role in protecting against CMV and tumors, probably through mucosal surveillance of cellular stress, and represent a population that is largely functionally distinct from Vγ9Vδ2+ T cells.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010137
Author(s):  
Alexander C. Dowell ◽  
Tracey A. Haigh ◽  
Gordon B. Ryan ◽  
James E. Turner ◽  
Heather M. Long ◽  
...  

Epstein Barr Virus (EBV) infects more than 95% of the population whereupon it establishes a latent infection of B-cells that persists for life under immune control. Primary EBV infection can cause infectious mononucleosis (IM) and long-term viral carriage is associated with several malignancies and certain autoimmune diseases. Current efforts developing EBV prophylactic vaccination have focussed on neutralising antibodies. An alternative strategy, that could enhance the efficacy of such vaccines or be used alone, is to generate T-cell responses capable of recognising and eliminating newly EBV-infected cells before the virus initiates its growth transformation program. T-cell responses against the EBV structural proteins, brought into the newly infected cell by the incoming virion, are prime candidates for such responses. Here we show the structural EBV capsid proteins BcLF1, BDLF1 and BORF1 are frequent targets of T-cell responses in EBV infected people, identify new CD8+ and CD4+ T-cell epitopes and map their HLA restricting alleles. Using T-cell clones we demonstrate that CD4+ but not CD8+ T-cell clones specific for the capsid proteins can recognise newly EBV-infected B-cells and control B-cell outgrowth via cytotoxicity. Using MHC-II tetramers we show a CD4+ T-cell response to an epitope within the BORF1 capsid protein epitope is present during acute EBV infection and in long-term viral carriage. In common with other EBV-specific CD4+ T-cell responses the BORF1-specific CD4+ T-cells in IM patients expressed perforin and granzyme-B. Unexpectedly, perforin and granzyme-B expression was sustained over time even when the donor had entered the long-term infected state. These data further our understanding of EBV structural proteins as targets of T-cell responses and how CD4+ T-cell responses to EBV change from acute disease into convalescence. They also identify new targets for prophylactic EBV vaccine development.


Author(s):  
Pilar Mendoza ◽  
Julia R. Jackson ◽  
Thiago Oliveira ◽  
Christian Gaebler ◽  
Victor Ramos ◽  
...  

AbstractAntiretroviral therapy suppresses but does not cure HIV-1 infection due to the existence of a long-lived reservoir of latently infected cells. The reservoir has an estimated half-life of 44 months and is largely composed of clones of infected CD4+ T cells. The long half-life appears to result in part from expansion and contraction of infected CD4+ T cell clones. However, the mechanisms that govern this process are poorly understood. To determine whether the clones might result from, and be maintained by exposure to antigen, we measured responses of reservoir cells to a small subset of antigens from viruses that produce chronic or recurrent infections. Despite the limited panel of test antigens, clones of antigen responsive CD4+ T cells containing defective or intact latent proviruses were found in 7 out of 8 individuals studied. Thus, chronic or repeated exposure to antigen may contribute to the longevity of the HIV-1 reservoir by stimulating the clonal expansion of latently infected CD4+ T cells.


2004 ◽  
Vol 199 (5) ◽  
pp. 649-659 ◽  
Author(s):  
Martine Gilleron ◽  
Steffen Stenger ◽  
Zaima Mazorra ◽  
Frederick Wittke ◽  
Sabrina Mariotti ◽  
...  

Mycobacterial lipids comprise a heterogeneous group of molecules capable of inducing T cell responses in humans. To identify novel antigenic lipids and increase our understanding of lipid-mediated immune responses, we established a panel of T cell clones with different lipid specificities. Using this approach we characterized a novel lipid antigen belonging to the group of diacylated sulfoglycolipids purified from Mycobacterium tuberculosis. The structure of this sulfoglycolipid was identified as 2-palmitoyl or 2-stearoyl-3-hydroxyphthioceranoyl-2′-sulfate-α-α′-d-trehalose (Ac2SGL). Its immunogenicity is dependent on the presence of the sulfate group and of the two fatty acids. Ac2SGL is mainly presented by CD1b molecules after internalization in a cellular compartment with low pH. Ac2SGL-specific T cells release interferon γ, efficiently recognize M. tuberculosis–infected cells, and kill intracellular bacteria. The presence of Ac2SGL-responsive T cells in vivo is strictly dependent on previous contact with M. tuberculosis, but independent from the development of clinically overt disease. These properties identify Ac2SGL as a promising candidate to be tested in novel vaccines against tuberculosis.


2020 ◽  
Author(s):  
Sylvia Zöphel ◽  
Gertrud Schwär ◽  
Maryam Nazarieh ◽  
Verena Konetzki ◽  
Cora Hoxha ◽  
...  

AbstractCytotoxic CD8+ T lymphocytes (CTL) eliminate infected cells or transformed tumour cells by releasing perforin-containing cytotoxic granules at the immunological synapse. The secretion of such granules depends on Ca2+-influx through store operated Ca2+ channels, formed by STIM-activated Orai proteins. Whereas molecular mechanisms of the secretion machinery are well understood, much less is known about the molecular machinery that regulates the efficiency of Ca2+-dependent target cell killing. Here, we isolated total RNA from natural killer (NK) cells, non-stimulated CD8+ T-cells, and from Staphylococcus aureus enterotoxin A (SEA) stimulated CD8+ T-cells (SEA-CTL) and conducted whole genome expression profiling by microarray experiments. Based on differential expression analysis of the transcriptome data and analysis of master regulator genes, we identified 31 candidates which potentially regulate Ca2+-homeostasis in CTL. To investigate a putative function of these candidates in CTL cytotoxicity, we transfected either SEA-stimulated CTL (SEA-CTL) or antigen specific CD8+ T-cell clones (CTL-MART-1) with siRNAs specific against the identified candidates and analyzed the killing capacity using a real-time killing assay. In addition, we complemented the analysis by studying the effect of inhibitory substances acting on the candidate proteins if available. Finally, to unmask their involvement in Ca2+ dependent cytotoxicity, candidates were also analyzed under Ca2+-limiting conditions. Overall, this strategy led to the identification of KCNN4, RCAN3, CCR5 and BCL2 as potential candidates to regulate the efficiency of Ca2+-dependent target cell killing.


2004 ◽  
Vol 72 (8) ◽  
pp. 4357-4367 ◽  
Author(s):  
Malgosia K. Matyszak ◽  
J. S. Hill Gaston

ABSTRACT Chlamydia trachomatis is an intracellular gram-negative bacteria which causes several clinically important diseases. T-cell-mediated immunity and the production of gamma interferon (IFN-γ) are known to be essential for the clearance of the bacteria in vivo. Here we have investigated CD8+-T-cell responses to C. trachomatis in patients with previous episodes of chlamydia infection. To isolate C. trachomatis-specific CD8+-T-cell lines, dendritic cells (DC) were infected with C. trachomatis and cocultured with purified CD8+ T cells to generate C. trachomatis-specific CD8+-T-cell lines which were then cloned. Two patterns of recognition of C. trachomatis-infected cells by CD8+-T-cell clones were identified. In the first, C. trachomatis antigens were recognized in association with classical class I HLA antigens, and responses were inhibited by class I HLA-specific monoclonal antibodies. The second set of clones was unrestricted by classical HLA class I, and further studies showed that CD1 molecules were also not the restriction element for those clones. Both types of clones produced IFN-γ in response to C. trachomatis and were able to lyse C. trachomatis-infected target cells. However, unrestricted clones recognized C. trachomatis-infected cells at much earlier time points postinfection than HLA-restricted clones. Coculture of C. trachomatis-infected DC with the C. trachomatis-specific clones induced DC activation and a rapid enhancement of interleukin-12 (IL-12) production. Early production of IL-12 during C. trachomatis infection, facilitated by unrestricted CD8+-T-cell clones, may be important in ensuring a subsequent Th1 T-cell-mediated response by classical major histocompatibility complex-restricted CD4+ and CD8+ T cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2436-2436
Author(s):  
Alexandra Sipol ◽  
Thomas Grünewald ◽  
Guenther Richter ◽  
Caroline Wernicke ◽  
Hans-Jochem Kolb ◽  
...  

Abstract Oncogene addiction provides ideal targets for successful immunotherapy. MLXIP (MAX like protein X interacting protein, also known as MondoA) is a metabolic stress sensor and a proglycolytic transcription factor potentially involved in metabolic addiction features of leukemia, the Warburg effect and anoikis. MLXIP dimerizes with MLX within the MYC interactome and promotes longevity in C. elegans (Johnson et al. 2014). The MYC interactome comprises the MYC/MAX/MAD/MLX/MLXIPtranscriptionfactornetwork: Its key players MYC, MAD and MLXIP differentially mediate proliferation, differentiation or metabolism by heterodimerization with MAX or MLX: While MAX is available for partnering with MYC vs. MAD, MLX may partner with MAD or MLXIP alternatively. In contrast to the perception of MLXIP as a tumor suppressor gene in some solid tumors such as breast and colon cancer (O'Shea and Ayer, 2013), we have extended our previous notion of up regulation of MLXIP in B cell acute lymphoblastic leukemia(ALL, Burdach & Richter 2007, Haferlach et al. 2010) by demonstrating that MLXIP is highly overexpressed and induces stemness, proliferation and B cell receptor signaling pathway signatures in common ALL (cALL, Wernicke et al. 2012). Here we report on the role of MLXIP in malignancy of cALL in vivo. Given the non accessibility of transcription factors by chimeric antigen receptor transgenic T cells (CARs) and the superiority of allorestricted T cells in T cell receptor (TCR) based immunotherapy of leukemia (Burdach & Kolb 2013), we also tested the targetability of MLXIP by allorestricted peptide specific T cells to ultimately generate MLXIP specific allorestricted TCR transgenic T cells (ATRs, instead of CARs). Our human/murine xenotransplantation model with immunodeficient RAG2-/-gc-/- mice was used (Richter et al. 2009). NALM6 and 697 cALL lines were retrovirally transduced with MLXIP short hairpin RNA (shRNA). Upon successful MLXIP knock down (kd), kd and control lines were injected into the mice; CD10+ blasts in blood, spleen and marrow were assessed. MLXIP specific T cells were generated by priming of donor HLAA0201 negative (A2-) T-cells with A2+ dendritic cells bearing MLXIP peptides, multimer-based sorting and subcloning of A2-CD8+ T-cells. For priming of T cells, five MLXIP peptides were chosen by SYMPEITHI, BIMAS and NetCTL1.2. analyses. Peptide 428 stabilized best A2 expression on TAP-deficient T2 cells. Specificity and functionality of T cell clones were tested by ELISpot interferon g (IFg) and granzyme B assays with six MLXIP+ leukemia lines (A2+, A2-). Off target effects of MLXIP specific T-cell clones were assessed by IFg reactivity against the MLXIP expressing A2+ NALM6 cell line vs. A2+ and A2- EBV immortalized lymphoblastoid cell lines from six donors. Peptide homology was assessed with BLAST algorithms in SWISSPROT. We found MLXIP to be overexpressed in both ALL and AML, while it was low in solid tumors including breast and colon cancer. MLXIP kd in the cALL cell line NALM-6 reduced the transcript by 80%. Importantly, in vivo MLXIP maintained 90-99% of CD10+ leukemic blasts in blood, marrow and spleen. Spleen size and weight normalized by MLXIP kd: While signs of leukemia engraftment were observed in all mice, the differences of CD10+ blasts in blood, marrow and spleens in the control vs. the MLXIP kd group were highly significant (p=0.008). The decrease of leukemic splenomegaly after MLXIP kd was impressive. Median spleen weight was 0.22g vs. 0.08g in the control vs. the kd group (Figure 1: The upper spleen displays the leukemic infiltration in control mice. The two lower spleens are from mice injected with MLXIP kd NALM6 cells). MLXIP peptide 428 specific T cell clones successfully recognized and killed A2 positive MLXIP expressing NALM6 and 697 cALL lines. In contrast, MLXIP specific T cell clones did not release IFg and granzyme B under stimulation with A2- REH, RS4;11 cALL lines. We identified the nucleotide sequence of alpha and beta variable chains of MLXIP specific A2 restricted TCR to finally obtain MLXIP specific ATRs. Peptide dependent and independent off target alloreactivity was very low compared to reactivity against NALM-6 cALL. In conclusion, these findings demonstrate that MLXIP maintains leukemic burden and malignancy of cALL in vivo. Moreover, we identified MLXIP as a promising target for immunotherapy of cALL and potentially other MLXIP expressing leukemias, including AML. Figure 1: Figure 1:. Disclosures Haferlach: MLL: Equity Ownership. Burdach:PDLI: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document