scholarly journals Docosahexaenoic fatty acid-containing phospholipids affect plasma membrane susceptibility to disruption by bacterial toxin-induced macroapertures

2020 ◽  
Author(s):  
Meng-Chen Tsai ◽  
Lucile Fleuriot ◽  
Sébastien Janel ◽  
David Gonzalez-Rodriguez ◽  
Camille Morel ◽  
...  

AbstractMetabolic studies and animal knockout models point to the critical role of polyunsaturated docosahexaenoic acid (22:6, DHA)-containing phospholipids (PLs) in physiology. Here, we study the impact of DHA-PLs on the dynamics of transendothelial cell macroapertures (TEMs) tunnels triggered by the RhoA GTPase inhibitory exotoxin C3 from Clostridium botulinum. Through lipidomic analyses, we show that primary human umbilical vein endothelial cells (HUVECs) subjected to DHA-diet undergo a 6-fold DHA-PLs enrichment in plasma membrane at the expense of monounsaturated OA-PLs. In contrast, OA-diet had almost no effect on PLs composition. Consequently, DHA treatment increases the nucleation rate of TEMs by 2-fold that we ascribe to a reduction of cell thickness. We reveal that the global transcellular area of cells remains conserved through a reduction of the width and lifetime of TEMs. Altogether, we reveal a homeostasis between plasma membrane DHA-PLs content and large-scale membrane dynamics.

2021 ◽  
Author(s):  
Meng-Chen Tsai ◽  
Lucile Fleuriot ◽  
Sébastien Janel ◽  
David Gonzalez-Rodriguez ◽  
Camille Morel ◽  
...  

Metabolic studies and animal knockout models point to the critical role of polyunsaturated docosahexaenoic acid (22:6, DHA)-containing phospholipids (PLs) in physiology. Here, we investigated the impact of DHA-PLs on the dynamics of transendothelial cell macroapertures (TEMs) triggered by RhoA inhibition-associated cell spreading. Lipidomic analyses show that human umbilical vein endothelial cells (HUVECs) subjected to DHA-diet undergo a 6-fold enrichment in DHA-PLs at plasma membrane (PM) at the expense of monounsaturated OA-PLs. Consequently, DHA-PLs enrichment at the PM induces a reduction of cell thickness and shifts cellular membranes towards a permissive mode of membrane fusion for transcellular tunnel initiation. We provide evidence that a global homeostatic control of membrane tension and cell cortex rigidity minimizes overall changes of TEM area through a decrease of TEM size and lifetime. Conversely, low DHA-PL levels at the PM leads to the opening of unstable and wider TEMs. Together, this provides evidence that variations of DHA-PLs levels in membranes affect cell biomechanical properties.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2363-2369 ◽  
Author(s):  
Ta-Kashi Ito ◽  
Genichiro Ishii ◽  
Seiji Saito ◽  
Keiichi Yano ◽  
Ayuko Hoshino ◽  
...  

AbstractVascular endothelial growth factor (VEGF) signaling in endothelial cells serves a critical role in physiologic and pathologic angiogenesis. Endothelial cells secrete soluble VEGF receptor-1 (sVEGFR-1/sFlt-1), an endogenous VEGF inhibitor that sequesters VEGF and blocks its access to VEGF receptors. This raises the question of how VEGF passes through this endogenous VEGF trap to reach its membrane receptors on endothelial cells, a step required for VEGF-driven angiogenesis. Here, we show that matrix metalloproteinase-7 (MMP-7) degrades human sVEGFR-1, which increases VEGF bioavailability around the endothelial cells. Using a tube formation assay, migration assay, and coimmunoprecipitation assay with human umbilical vein endothelial cells (HUVECs), we show that the degradation of sVEGFR-1 by MMP-7 liberates the VEGF165 isoform from sVEGFR-1. The presence of MMP-7 abrogates the inhibitory effect of sVEGFR-1 on VEGF-induced phosphorylation of VEGF receptor-2 on HUVECs. These data suggest that VEGF escapes the sequestration by endothelial sVEGFR-1 and promotes angiogenesis in the presence of MMP-7.


2010 ◽  
Vol 104 (12) ◽  
pp. 1235-1241 ◽  
Author(s):  
Huibo Li ◽  
Fenglin Cao ◽  
Yanhua Su ◽  
Shengjin Fan ◽  
Yinghua Li ◽  
...  

SummaryAdministration of various chemotherapeutic agents is associated with an increased risk of thrombotic events. Although vascular endothelium plays a predominant role in blood coagulation and fibrinolysis, the effect of cytotoxic drugs on the procoagulant activity (PCA) of endothelial cells has not been well evaluated. Our study aims to investigate the possibility that daunorubicin, a chemotherapeutic agent, exerts prothrombotic effect on endothelial cells. We tested the impact of daunorubicin on phosphatidylserine (PS) exposure, endothelial microparticles (EMPs) release and consequent PCA. Human umbilical vein endothelial cells (HUVECs) were treated with daunorubicin (0.1, 0.2, 0.5, 1, 2 μM) for 24 hours. PCA of HUVECs was measured using clotting time and purified coagulation complex assays. Counts and PCA of EMPs were evaluated by flow cytometry and clotting time assay, respectively. Lactadherin was used as a novel probe for detection of PS exposure and EMPs release. We found that daunorubicin dose-dependently increased the PS exposure and consequent PCA of HUVECs. Moreover, daunorubicin treatment also enhanced the release of EMPs which were highly procoagulant. This increment was especially significant at 0.2 μM of daunorubicin or more. Blockade of PS with lactadherin inhibited over 90% of HUVECs and EMPs PCA. However, anti-TF antibody had no significant inhibition effect. Our results demonstrate that daunorubicin treatment enhanced PCA of HUVECs through PS exposure and shedding of procoagulant EMPs. Lactadherin acts as an efficient anticoagulant in this process.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5185-5185
Author(s):  
Yueyue Fu ◽  
Huibo Li ◽  
Wen Li ◽  
Xiushuai Dong ◽  
Jinxiao Hou ◽  
...  

Abstract Abstract 5185 Administration of various chemotherapeutic agents is associated with an increased risk of thrombotic events. Although vascular endothelium plays a predominant role in blood coagulation and fibrinolysis, the effect of cytotoxic drugs on the procoagulant activity (PCA) of endothelial cells has not been well evaluated. Our study aims to investigate the possibility that daunorubicin, a chemotherapeutic agent, exerts prothrombotic effect on endothelial cells. We tested the impact of daunorubicin on phosphatidylserine (PS) exposure, endothelial microparticles (EMPs) release and consequent PCA. Human umbilical vein endothelial cells (HUVECs) were treated with daunorubicin (0.1, 0.2, 0.5, 1, 2 μ M) for 24 h. PCA of HUVECs was measured using clotting time and purified coagulation complex assays. Counts and PCA of EMPs were evaluated by flow cytometry and clotting time assay, respectively. Lactadherin was used as a novel probe for detection of PS exposure and EMPs release. We found that daunorubicin dose-dependently increased the PS exposure and consequent PCA of HUVECs. Moreover, daunorubicin treatment also enhanced the release of EMPs which were highly procoagulant. This increment was especially significant at 0.2 μ M of daunorubicin or over. Blockade of PS with lactadherin inhibited over 90% of HUVECs and EMPs PCA. However, anti-TF antibody had no significant inhibition effect. Our results demonstrate that daunorubicin treatment enhanced PCA of HUVECs through PS exposure and shedding of procoagulant EMPs. Lactadherin acts as an efficient anticoagulant in this process. Disclosures: No relevant conflicts of interest to declare.


1988 ◽  
Vol 255 (1) ◽  
pp. 179-184 ◽  
Author(s):  
T J Hallam ◽  
R Jacob ◽  
J E Merritt

Human umbilical-vein endothelial cells stimulated with thrombin or histamine show an increase in [Ca2+]i (cytoplasmic free calcium concn.) that is maintained well above the basal pre-stimulated value as long as agonist and a source of extracellular Ca2+ are present. These results provide circumstantial evidence that agonists stimulate influx of Ca2+ across the plasma membrane and into the cytoplasm. Here, we have used Mn2+ as the extracellular bivalent cation which can bind to the fluorescent Ca2+ indicator fura-2 to quench its fluorescence completely. Human umbilical-vein endothelial cells were loaded with fura-2 and, in the presence of extracellular Mn2+, thrombin and histamine were shown to cause quenching of the intracellular dye. This result demonstrates conclusively that agonists can stimulate the influx of bivalent cations. Stimulated discharge of Ca2+ from intracellular stores and influx of Mn2+ were temporally resolved in the same cells to show that release of Ca2+ from intracellular stores clearly precedes influx. Influx of Mn2+ was also demonstrated when extracellular Mn2+ was added after agonist at a time when [Ca2+]i had fallen back to the basal value, showing that influx is not dependent on elevated [Ca2+]i.


2017 ◽  
Vol 216 (10) ◽  
pp. 3087-3095 ◽  
Author(s):  
Laura Soto Hinojosa ◽  
Manuel Holst ◽  
Christian Baarlink ◽  
Robert Grosse

Entosis is a nonapoptotic form of cell death initiated by actomyosin-dependent homotypic cell-in-cell invasion that can be observed in malignant exudates during tumor progression. We previously demonstrated formin-mediated actin dynamics at the rear of the invading cell as well as nonapoptotic plasma membrane (PM) blebbing in this cellular motile process. Although the contractile actin cortex involved in bleb-driven motility is well characterized, a role for transcriptional regulation in this process has not been studied. Here, we explore the impact of the actin-controlled MRTF–SRF (myocardin-related transcription factor–serum response factor) pathway for sustained PM blebbing and entotic invasion. We find that cortical blebbing is tightly coupled to MRTF nuclear shuttling to promote the SRF transcriptional activity required for entosis. Furthermore, PM blebbing triggered SRF-mediated up-regulation of the metastasis-associated ERM protein Ezrin. Notably, Ezrin is sufficient and important to sustain bleb dynamics for cell-in-cell invasion when SRF is suppressed. Our results highlight the critical role of the actin-regulated MRTF transcriptional pathway for bleb-associated invasive motility, such as during entosis.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Judit Erdei ◽  
Andrea Tóth ◽  
Enikő Balogh ◽  
Benard Bogonko Nyakundi ◽  
Emese Bányai ◽  
...  

Hemolytic or hemorrhagic episodes are often associated with inflammation even when infectious agents are absent suggesting that red blood cells (RBCs) release damage-associated molecular patterns (DAMPs). DAMPs activate immune and nonimmune cells through pattern recognition receptors. Heme, released from RBCs, is a DAMP and induces IL-1βproduction through the activation of the nucleotide-binding domain and leucine-rich repeat-containing family and pyrin domain containing 3 (NLRP3) in macrophages; however, other cellular targets of heme-mediated inflammasome activation were not investigated. Because of their location, endothelial cells can be largely exposed to RBC-derived DAMPs; therefore, we investigated whether heme and other hemoglobin- (Hb-) derived species induce NLRP3 inflammasome activation in these cells. We found that heme upregulated NLRP3 expression and induced active IL-1βproduction in human umbilical vein endothelial cells (HUVECs). LPS priming largely amplified the heme-mediated production of IL-1β. Heme administration into C57BL/6 mice induced caspase-1 activation and cleavage of IL-1βwhich was not observed in NLRP3−/−mice. Unfettered production of reactive oxygen species played a critical role in heme-mediated NLRP3 activation. Activation of NLRP3 by heme required structural integrity of the heme molecule, as neither protoporphyrin IX nor iron-induced IL-1βproduction. Neither naive nor oxidized forms of Hb were able to induce IL-1βproduction in HUVECs. Our results identified endothelial cells as a target of heme-mediated NLRP3 activation that can contribute to the inflammation triggered by sterile hemolysis. Thus, understanding the characteristics and cellular counterparts of RBC-derived DAMPs might allow us to identify new therapeutic targets for hemolytic diseases.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
A. R. Vollertsen ◽  
D. de Boer ◽  
S. Dekker ◽  
B. A. M. Wesselink ◽  
R. Haverkate ◽  
...  

AbstractMicrofluidic systems enable automated and highly parallelized cell culture with low volumes and defined liquid dosing. To achieve this, systems typically integrate all functions into a single, monolithic device as a “one size fits all” solution. However, this approach limits the end users’ (re)design flexibility and complicates the addition of new functions to the system. To address this challenge, we propose and demonstrate a modular and standardized plug-and-play fluidic circuit board (FCB) for operating microfluidic building blocks (MFBBs), whereby both the FCB and the MFBBs contain integrated valves. A single FCB can parallelize up to three MFBBs of the same design or operate MFBBs with entirely different architectures. The operation of the MFBBs through the FCB is fully automated and does not incur the cost of an extra external footprint. We use this modular platform to control three microfluidic large-scale integration (mLSI) MFBBs, each of which features 64 microchambers suitable for cell culturing with high spatiotemporal control. We show as a proof of principle that we can culture human umbilical vein endothelial cells (HUVECs) for multiple days in the chambers of this MFBB. Moreover, we also use the same FCB to control an MFBB for liquid dosing with a high dynamic range. Our results demonstrate that MFBBs with different designs can be controlled and combined on a single FCB. Our novel modular approach to operating an automated microfluidic system for parallelized cell culture will enable greater experimental flexibility and facilitate the cooperation of different chips from different labs.


Sign in / Sign up

Export Citation Format

Share Document